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Abstract
Land surface temperature is a physical-environmental variable that is the target of studies in climatology and heat island 
phenomena resulting from the urbanization model of the 21st century. It is known that each object has a different thermal 
capacity, which results in higher or lower temperatures. The modeling of temperature as a function of objects on the land 
surface can allow understanding between these variables. It can corroborate temperature forecasts with the alteration of 
objects in an area. The objects on the Earth’s surface can be computed with geoprocessing techniques that aim to detail Land 
Use and Occupation. This paper evaluates the Linear, Exponential, and Sinusoidal models to determine which of these models 
is more expressive for the study of the land surface temperature as a function of land surface objects. For this purpose, images 
from the Landsat 8 satellite were used to calculate the Earth’s surface temperature and determine the scene’s objects. To 
determine the scene’s objects, the Soil Adjusted Vegetation Index (SAVI) was used, which is one of the techniques for obtaining 
Land Use and Occupation. For model analysis, Akaike’s Information Criterion (AIC), Bayesian Information Criterion (BIC), 
and Sum of Square of Residuals (SSR). According to the AIC, BIC, and SSR criteria, the sinusoidal model presented better 
performance when compared to the other models. However, there are large variations in SSR between classes, especially for 
the pasture class, which makes the models not highly explanatory.

Keywords: Geoprocessing. Landsat. Land Use and Occupation.

Introduction

In Climatology, there is an effort to understand 
the relationship between Land Use and Land 
Occupation with land surface temperature (LST), 
driven mainly by the growing anthropization of the 
landscape and global warming. Understanding 
the relationship between these variables can 
have direct implications on the urbanization 
model of the 21st century, generating projections 
of scenarios for heat islands and ecosystem 
studies (XU & TAN, 2007; WENG et al., 2014). 
However, the great challenge has been to find 
explanatory models that express the dependence 
of surface temperature on the constituents of the 
scene, especially models that use water bodies 
(BEZERRA et al., 2018).

The LST is characterized as a heat flow of 
a given body as a function of the difference in 

energy absorbed by the radiated energy, allowing 
us to understand better the interaction of the 
Earth’s surface and the atmosphere (STEINKE 
et al., 2010). Such metric subsidizes studies 
of thermal patterns of landscapes, the survey 
of evapotranspiration of crops and forests, heat 
island diagramming, and assessment of soil 
moisture, besides being an essential tool for 
the evaluation of environmental, ecological, and 
climatic processes in a local, regional and global 
sphere (WENG et al., 2014; FERREIRA et al., 
2020; PIRES; VALLERIUS, 2020).

The estimate of LST is based on Planck’s law 
(1901) in which everybody that is not at absolute 
zero emits different values of electromagnetic 
radiation. In turn, this radiation can be captured 
by sensors and converted into temperature by 
remote sensing techniques (BALDU, 2006). 

Modeling of the land surface temperature as a 
function of the soil-adjusted vegetation index

Luis Carlos da Silva Soares1, Philipe Guilherme Corcino Souza2, Sarah Dieckman Assunção Rodrigues3, 
Rafaela Carla Santos Perpétuo4, Isadora Azevedo Perpétuo5

https://doi.org/10.18406/2316-1817v15n120231723

mailto:luisccbvgp@gmail.com
mailto:philpe.corcino@gmail.com
mailto:sarahdieckman.a.r@gmail.com
mailto:rafaela.perpetuo@outlook.com
mailto:isadoraperpetuo@homail.com


2

Modeling of the land surface temperature as a function of the soil-adjusted vegetation index

Revista Agrogeoambiental, v.15, e20231723, 2023

Therefore, it is possible to infer a relation of the 
LST as a function of each body.

To understand LST related to each 
landscape constituent, it is necessary to survey 
them at the study site. Generally, these objects 
can be distributed in areas of exposed soil, 
vegetated areas, and areas with water bodies. 
Studies that seek this premise use land use and 
occupation survey techniques using vegetation 
indices (CRUZ, 2019). Among the various 
existing vegetation indices, the Soil Adjusted 
Vegetation Index (SAVI) deserves prominence 
for minimizing the interference of soil values 
making the classification more accurate (SILVA 
& GAVINCIO, 2012).

The modeling of the LST as a function of 
land use and occupation can contribute to 
predicting the temperature for an area if there 
is a modification of the landscape. Predict the 
behavior of temperature can be a crucial tool in 
decision-making and monitoring of ecological 
succession processes and soil microbiota 
(MOREIRA & SIQUEIRA, 2006), in addition, 
to being able to subsidize microclimate studies 
since LST promotes the loss of moisture at the 
surface by evaporation (CARNEIRO, 2014).

Traditionally, studies relating land use 
and occupation with LST employ mostly linear 
models, as seen by Marques et al. (2005), 
Araújo et al. (2017), Bezerra et al. (2018), 
and Becker et al. (2020). However, the quality 
of this model shows variation among some 
literature, obtaining good performance in some 
studies and others not. Moreover, employing the 
linear model in the modeling of LST and land 
use and occupation considering the presence of 
water bodies has been a challenge since they 
do not present satisfactory results due to the 
particularity of their thermal and optic properties 
(SOARES et al.,2020).

Although there is variation in the relationship 
between land use and occupation with LST 

when using the linear model, such a relationship 
may be better expressed as a function of non-
linear models. This paper evaluated the LST as 
a function of land use and occupation through 
the traditional linear model and non-linear 
exponential and sinusoidal models.

Material and methods

Study area

The study area was the municipality of 
Governador Valadares, located in Doce River 
Valley, the eastern region of the state of Minas 
Gerais in the coordinates Latitude 18 ° 51’2 “S; 
Longitude: 41°56’53” E (Figure 1). It is located 
in the Atlantic Forest biome (Figure 2), with 
an altitude of 180 meters above sea level and 
a tropical climate classified as AW-type sub-
hot and sub-dry tropical (KÖPPEN, 1948). Its 
temperature is high, it reaches a historical mean 
of 26.9ºC in summer and 21.5ºC in winter. 
Mean annual rainfall and relative humidity 
are 1,113.80 mm and 75%, respectively 
(PMSB, 2015).

The choice of the municipality was due 
to its spatial heterogeneity. It has a total area 
of 2,342,325 km2, 57.59 km² of urban area 
(IBGE, 2018). The municipality has areas of 
Atlantic Forest, areas of exposed and degraded 
soil (FAVERO, 2001), pasture area, and the 
River Doce (Rio Doce) presence. It presents 
Ombrophilous Dense forests in higher areas 
and Seasonal Semideciduous and Deciduous 
composition in lower and dissected areas (PMSB, 
2015). Its location on the bank of the Doce River 
favored the city’s demographic expansion and 
the intense use of natural resources, especially 
mineral and forest exploration, which created 
long-term environmental issues (ESPÍNDOLA, 
2015). The heterogeneity of the landscape, 
which is composed of different Land Use and 
Occupation Classes, was the main characteristic 
of the analysis for LST estimation.
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Work steps

The study was developed from the acquisition 
of a Landsat 8 satellite image of orbits and points 
216/73 and 217/73, respectively on the date of 
12/04/2020. The images were acquired from the 
United States Geological Service Site (USGS).

Digital Image Processing (DIP)

Initially, the Bands’ radiometric correction 
was performed to reduce the interference of the 
atmosphere and correct errors inherent to the 
satellite calibration. The conversion of the digital 
values (DV) of the images into radiance values 

Figure 1- Location of the study area.

Source: Prepared by the authors (2023).

Figure 2- Biome in the study area.

Source: Prepared by the authors (2023).
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was performed with the help of the Software 
ENVI 5.1 (2011). Later, Band 8 (Panchromatic) 
was merged with the other OLI Sensor bands 
to improve the Images’ resolution. Then, bands 
2,3,4,5, 10, and 11 of each scene were merged, 
each with its corresponding one. Each newly 
generated band was cut using the shapefile 
of the municipality (IBGE, 2020). In the end, 
the reprojection of the Bands from the northern 
hemisphere to the southern hemisphere was 
carried out and the processing for the estimation 
of LST was followed.

Land Surface Temperature Calculation (LST)

To calculate LST Band 10 corresponding to 
the thermal infrared range (10.6 - 11.19 μm) 
captured by the TIRS sensor was used. This band 
is used because it contains infrared values emitted 
as a function of their temperature by objects, 
in addition to suffering little interference in the 
atmosphere (GUSSO et al., 2007; BORGES & 
OLIVEIRA, 2010). To determine the Spectral 
Radiance Equation (1) and LST Equation (2) 
the methodology of Coelho & Correa (2013) was 
used. The values of each element and constant 
were extracted from the metadata file provided 
with the raster.

Lλ=ML∙QCAL+AL Equation (1)

Where: Lλ = Aperture Sensor Spectral Radiance in Watts/ 
(m2 sr μm); ML = Band 10 resize multiplicative factor; 
QCAL = Band-specific additive scaling factor; AL = Digital 
band level values, it is the input of the band itself.

T=K 2÷ ln (k 1÷ Lλ+1) Equation (2)

Where: T = Effective temperature on the satellite in Kelvin 
(K); K2 = Band 10 resize multiplicative factor; K1 = Band 
10 specific additive resizing factor; Lλ = Spectral radiance 
in Watts/ (m² sr μm).

The temperature obtained by 
= 2÷𝑇𝑇 𝑇𝑇 𝑇𝑇𝑇𝑇(k 1÷ Lλ+1)  Equation (2) was 

converted to degrees Celsius (°C) by subtracting 
the value found by the temperature of the freezing 
point of water at 1 atm (273.15K).

Soil Adjusted Vegetation Index (SAVI)

The calculation of SAVI, used by Huete 
(1988), is described by Equation 3. The 
objective is to classify the objects present in 
the scene in an output interval between –1 to 
+1, using Landsat 8 OLI red (Band 4) and near-
infrared (Band 5) bands. The model is like the 
one used to calculate the Normalized Difference 
Vegetation Index (NDVI), differentiating itself by 
adding an Ls correction to minimize the effects 
of soil values and improve the accuracy for areas 
without uniform vegetation cover (HUETE & LIU; 
1994). The correction value was based on the 
studies by Huete & Liu (1994) using Ls equal 
to 0.5 due to the heterogeneity of objects in the 
scene composition.

SAVI=(BAND5−BAND 4)∙(1+Ls)÷ (BAND 5+BAND 4+Ls ) 
SAVI=(BAND5−BAND 4)∙(1+Ls)÷ (BAND 5+BAND 4+Ls ) Equation (3)

Where: BAND 4 = Spectral Band Red; BAND 5 = Near-
infrared spectral band; Ls = Constant called the adjustment 
factor of the SAVI index.

Classification of Ground Objects

For a better classification of Object Classes 
present in the scene, an RGB combination of 
Bands 5 (Red), Band 4 (Green), and Band 3 
(Blue) of the Landsat 8 satellite was performed. 
In the sampling process described above, it was 
verified in which class the measured SAVI and 
LST belonged to validate the data. The criteria 
used were described in Table 1.

Statistical Models

For all models tested in this paper, LST was 
modeled as a function of SAVI. For modeling 
purposes, the statistical program R Development 
Core Team (2020) and CurveExpert (HYAMS, 
2020) were used. The CurveExpert software 
was used to estimate the values   of the initial 
parameters of the models shown in Table 2. 
These values   were then used in the R software 
for statistical analysis of the models and their 
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validation K-fold following the procedures 
available on https: // github. com/ Luigi carlo 01/ 
LST- SAVI/ blob/ main/ Validation.

Two distinct modeling groups were evaluated. 
The first considers SAVI with all Ground Classes. 
The second disregards the SAVI water bodies 
in the modeling. The justification for removing 
water bodies comes from the anomalous behavior 
of water in emissivity, reflectance, radiation 
absorption, and radiation scattering (FERREIRA 
& FILHO, 2009), which causes lower SAVI values 
to present a median temperature as a function of 
its specific heat.

Model evaluation

The evaluation of the models was based on 
the recommendations of Zeviani et al. (2013). 
The Akaike Information Criterion (AIC), Bayesian 
Information Criterion (BIC), and Sum of squares 
of the residuals (SSR) were determined.

Results and discussion

The parameters of the evaluated models 
were significant in the “t” test, presenting a 

p <0.05 as shown in Table 3. It is noted that 
parameter b1 for the linear and Exponential 
models has a negative value, both for models 
that use hydrous bodies in modeling and those 
that do not, indicating that the temperature 
decreases as the SAVI increases.

Within the models using data from water 
bodies, it was found that the sinusoidal model 
presented the best parameters of AIC, BIC, and 
SSR, having the lowest values when compared 
to the other models (Table 4). The SSR of the 
sinusoidal model was almost three times smaller 
than the Linear and Exponential models, which 
may indicate that the latter does not explain 
well the relationship between SAVI and Earth’s 
Surface Temperature.

Models whose modeling did not use 
waterbody data also showed better values for 
the sinusoidal model, with lower values in the 
AIC, BIC, and SSR. However, unlike the modeling 
that inserts data from historical bodies, these 
parameters are close values between models. In 
addition, comparing the SSR values of models 
that use water bodies with those that do not use 
water bodies, a decrease is observed when the 

Table 1- Soil classes as a function of SAVI sampled.

SAVI interval Land use types

x ≤ 0 Waterbody

0 < x ≤ 0.25 Region without Vegetation

0.25 < x ≤ 0.45 Pasture region and sparse vegetation

x > 0.45 Native forest/ Dense Vegetation

Where x = SAVI value.

Source: Prepared by the authors (2023).

Table 2- Statistical Models used in LST modeling as a function of SAVI.

MODEL Model Equation

Linear (Model 1) y=b0+b1∙ x

Exponential (Model 2) y=b0+e
b1∗x

Sinusoid (Model 3) y=b0+b1∙cos (b2 ∙ x ∙+b3)

Where: b0, b1, b2, and b3 are model parameters. e= Euller number. x= SAVI and Y= LST C

Source: Prepared by the authors (2023).

https://github.com/Luigicarlo01/LST-SAVI/blob/main/Validation
https://github.com/Luigicarlo01/LST-SAVI/blob/main/Validation
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Table 3: Information on the parameters of the Linear, Sinusoidal, and Exponential models considering modeling 
with and without water bodies.

MODEL WITH WATER BODIES Value Error t p
b0

Linear 26,3757 0,1613 163,484 <0,0001
Exponential 26,3459 0,1612 163,454 <0,0001

Sinusoid 26,1802 0,0668 392,14 <0,0001
b1

Linear -2,3104 0,4483 5,154 <0,0001
Exponential -0,0852 0,0173 4,926 <0,0001

Sinusoid -2,2721 0,0837 27,16 <0,0001
b2

Sinusoid 8,7462 0,2254 38,81 <0,0001
b3

Sinusoid -1,9506 0,0845 23,09 <0,0001
MODEL WITHOUT WATER BODIES Value Error t p

b0
Linear 29,2443 0,1676 174,52 <0.0001

Exponential 29,4146 0,1772 166,03 <0.0001
Sinusoid 26,3643 0,1195 220,553 <0.0001

b1
Linear -9,4391 0,4371 21,59 <0.0001

Exponential -0,3652 0,0166 22,02 <0.0001
Sinusoid 2,2306 0,0987 22,604 <0.0001

b2
Sinusoid 7,2025 0,6068 11,87 <0.0001

b3
Sinusoid -0,5356 0,2529 2,118 <0.0001

Where: b0, b1, b2 e b3 are parameters of models. t = t value and p = p-value.

Source: Prepared by the authors (2023).

Table 4: Model Comparison Parameters.

Models with water bodies

PARAMETER LINEAR EXPONENTIAL SINUSOID

AIC 1490,967 1492,207 1119,593

BIC 1502,541 1503,781 1138,882

SSR 1353,327 1415,65 488,031

Models without water bodies

AIC 1026,06 1031,263 988,6878

BIC 1037,171 1042,374 1007,207

SSR 534,3536 526,4227 458,611

Where: AIC, BIC e SSR are the Akaike information criterion, Bayesian information criterion, and the sum of 
squares of the residuals, respectively.

Source: Prepared by the authors (2023).
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scene water bodies values are disregarded. This 
decrease is more explicit in linear and exponential 
models, with an almost 3-fold reduction in 
total residuals.

The graphical analysis of the data plotted for 
the observed values and values estimated by the 
modeling corroborate the information mentioned 
above. Visually, it is observed that for the modeling 
with water bodies Figure 3-A, the sinusoidal 
model was able to better contemplate the values 
of the observations compared to the Linear and 
Exponential Models. The latter showed similar 
behavior to each other with an overlapping of 
the lines. This also corroborates the data in the 
previous table, where it is shown that the AIC, 
BIC, and SSR parameters are similar.

The graphical analysis of the plotted data that 
does not consider the values of the waterbodies 
in the modeling, as can be seen in Figure 3-B 
presents an overlapping behavior of the lines 
for the exponential and linear models. However, 

unlike Figure 3-A, these models considered the 
SAVI values in the range that corresponds to the 
exposed soil (0.0 <SAVI <0.25).

The higher temperatures in this class can be 
explained by the specific heat inherent to the type 
of soil in the studied area. The soils of Governador 
Valadares are predominantly composed of clayey 
oxisol (ALBUQUERQUE et al., 2008), having a 
specific heat of magnitude 0.2127 cal. g C−1 
(OKE, 1995). The closer to zero the value, the 
greater the energy needed to vary the temperature 
of a body causing it to heat up faster, obtaining 
the highest temperatures.

As the vegetation gradient moves closer 
to 1, the vegetated area becomes denser. In this 
process, it is noted that the temperature tends to 
decrease as the vegetation becomes denser. The 
explanation for this result may come from the 
presence of a water gradient in the leaves of the 
plants. Water has a specific heat of approximately 
1 cal / g. °C means that the energy given to the 

Figure 3: Adjusted temperature models as a function of SAVI considering water bodies (A) and without water 
bodies (B).

 

Source: Prepared by the authors (2023).
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system must be greater for its temperature to 
vary. Therefore, the water is more difficult to 
be heated, causing the system temperature to 
vary less, and consequently, to have a lower 
temperature (PILLAR, 1995; BATALHA, 2011; 
BARBOSA et al., 2019). This justification for 
denser bodies can be confirmed by observing the 
similarity of the temperature of denser vegetation 
(SAVI> 0.45) with places that contain only water 
bodies SAVI <0.0 (Figure 3-A).

The range of SAVI corresponding to pasture 
(2.50 <SAVI <4.50) showed a wide dispersion 
of observed values (Figure -A-B). Pereira et al. 
(2012) found in their work temperature variations 
for pasture areas 18.8 ° C - 31.1 ° C. According 
to the authors, this variation may result from 
pasture degradation, increasing an exposed soil 
area. As the soil has a lower specific heat than 
plants, the temperature of these points tends to 
be higher. This variation may be responsible for 
the high SSR values for the class, as shown in 
Table 5.

The SSR of the class, shown in Table 5, 
demonstrates variation within each model. High-
class values indicate an inadequate fit of the class 

to the model. High standard deviations indicate 
significant variations between classes for a given 
model. The Models assessed showing high 
standard deviation for an SSR demonstrate the 
model does not explain a temperature variable 
within all classes.

The SSR analysis for modeling without water 
bodies shows lower values of total SSR and 
standard deviation when compared to modeling 
with water bodies. Although these models may 
be better, they also have a somewhat high 
standard deviation between classes, which may 
be due to the pasture class. Thus, models may 
not fit well in the values of this class, implying 
greater prediction errors.

One way to get around this problem would 
be to adopt modeling by individual classes. In this 
way, each class would have its own model, and 
these would not interfere with the other models’ 
values. Thus, the accuracy may be greater.

Limitations of the study

This work evaluated as a predictor variable 
for surface temperature the SAVI value of a 
single scene. The tested models deal only with 

Table 5: SSR of classes by evaluated model

Models with Water bodies

CLASS LINEAR EXPONENTIAL SINUSOID

Exposed Soil 593,5362 643,9028 133,9308

Pasture 298,2384 305,4197 253,1735

Dense Vegetation 124,7141 132,4717 86,0275

Water 336,8382 333,8558 14,8713

standard deviation 193,5386 212,8256 100,1988

Total 1353,327 1415,65 488,0031

Models without Water bodies

Exposed soil 135,5888 156,3396 113,5632

Pasture 287,8216 269,3596 265,5283

Dense Vegetation 110,9432 100,7235 79,5195

standard deviation 78,22205 70,16236 80,86452

Total 534,3536 526,4227 458,611

Source: Prepared by the authors (2023).
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only one variable, and it is not possible to use 
multiple characteristics directly within these 
models. It is possible to study two characteristics 
simultaneously for temperature prediction 
using covariance between characteristics as 
the predictor.

More robust image processing techniques 
and data analysis can be more useful for handling 
a large amount of data and plotting a model using 
multiple characteristics. In this scenario, the use 
of Neural Networks and machine learning may 
present themselves as alternatives for improving 
the results.

The models in this study present only 
concern the study area not being validated for 
other regions. The equations found were not 
tested in other regions. Therefore, its use is 
not recommended to estimate the temperature 
of other sites. Further studies validating the 
equations for other locations, within the biome 
itself and in others, it is important to verify the 
possibility of using the model only on a local 
scale or in a large region.

Final considerations

There was a significant variation of residues 
for the exposed soil and water bodies Class in the 
linear and exponential models. In contrast, the 
exposed soil presented the highest value for all 
models in the modeling without the water bodies.

It was verified that the models tested in 
the modeling of the Land Surface Temperature 
with the Use and Occupation of the Land with 
and without water bodies need more study 
for a better adaptation. Although the Sinusoid 
model was better in the AIC, BIC, and SSR 
parameters, the residual analysis showed a 
non-homogeneous distribution and high values. 
These residual values imply an underestimation 
and overestimation of the Temperature values, 
compromising the model’s efficiency.
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