Intoxication of newly implanted coffee plants by simulated drift of the dicamba herbicide

Autores

  • Fabio Alessandro Muniz Pires
  • Caroliny Pereira Santos
  • Chayenne de Lira Ferreira
  • Saul Jorge Pinto de Carvalho IFSULDEMINAS - Campus Machado

DOI:

https://doi.org/10.18406/2316-1817v15nunico20231728

Palavras-chave:

Coffea arabica, phytotoxicity, auxinics, injury

Resumo

After the release of soybean cultivars resistant to the herbicide dicamba, this product should be used more frequently in weed management programs, which may increase the risk of drift to neighboring crops, since the molecules are volatile and might cause damage in non-target plants. This work was developed to evaluate the effects of sub-doses of the herbicide dicamba on young coffee plants, simulating a drift situation. The experiment was carried out in a greenhouse, with a randomized block design of eight treatments and five replications. Each plot consisted of a 4 L pot, filled with sieved clayey soil and tanned manure (3:1 v/v), with a seedling of Catuaí IAC 144 coffee. The treatments used were: 0 (control), 0.0001, 0.001, 0.01, 0.1, 1.0, 10.0, and 100.0 g ha−1 of dicamba. Plant's percentual phytotoxicity was evaluated up to 49 days after application (DAA), SPAD index (14, 28, and 42 DAA), and dry matter biomass, at 49 DAA. In all evaluations, no differences were observed regarding phytotoxicity for dicamba sub-doses of up to 0.01 g ha−1. The highest doses of dicamba caused visual injuries of up to 31%. At 49 DAA, there were no differences regarding dry matter biomass. Leaf symptoms caused by the herbicide were observed, such as curling, wrinkling, and epinasty. No plant death was observed. Compared to other crops, coffee might be considered more tolerant to sub-doses of dicamba, with adequate recovery capacity for reduced doses of this herbicide.

Referências

BEHRENS, M. R. Dicamba resistance: enlarging and preserving biotechnology-based weed management strategies. Science. v. 316, n. 5828, p. 1185-1188, 2007. Disponível em: https://doi.org/10.1126/science.1141596 Acesso em: 19 mai. 2022.

CARVALHO, S.J.P.; MAGALHÃES, T.B.; LÓPEZ OVEJERO, R.F.; PALHANO, M.G. Fitotoxicidade de subdoses do herbicida dicamba quando aplicado em pré-emergência da cultura da soja não-tolerante. Revista de Ciências Agroveterinárias, v.21, n.2, p.85-92, 2022. Disponível em: https://doi.org/10.5965/223811712122022085 Acesso em: 19 mai. 2022.

CHRISTOFFOLETI, P. J.; FIGUEIREDO, M. R. A.; PERES, L. E. P.; NISSEN, S.; GAINES, T. Auxinic herbicides, mechanisms of action, and weed resistance: a look into recent plant science advances. Scientia Agricola, v. 72, n. 4, p.356-362, 2015. Disponível em: http://dx.doi.org/10.1590/0103-9016-2014-0360 Acesso em: 19 mai. 2022.

CORRÊA, M. J. P.; ALVES, G. L.; ROCHA, L. G. F.; SILVA, M. R. M. Períodos de interferência de plantas daninhas na cultura do feijão caupi. Revista de Ciências Agroambientais, v. 13, n. 2, p.1-7, 2016. Disponível em: https://doi.org/10.5327/rcaa.v13i2.1183 Acesso em: 19 mai. 2022.

COSTA, E. M. Deriva simulada de Dicamba e 2,4-D: efeitos sobre a produtividade e qualidade fisiológica das sementes de soja recém colhidas e armazenadas. 2019. 74f. Dissertação (Mestrado em Ciências) – Instituto Federal de Educação, Ciência e Tecnologia Goiano, Rio Verde, 2019.

EGAN, J. F.; MORTENSEN, D. A. Quantifying vapor drift of dicamba herbicides applied to soybean. Environmental Toxicology and Chemistry, v.31, n.5, p. 1023-1031, 2012. Disponível em: https://doi.org/ 10.1002/etc.1778 Acesso em: 19 mai. 2022.

GRUBE, A.; DONALDSON, D.; KIELY, T.; LAWU. Pesticides Industry Sales and Usage: 2006 and 2007 Market Estimates. U.S. Environmental Protection, 2011. p.1-41.

HEAP, I. International survey of herbicide resistant weeds. Disponível em: http://www.weedscience.org/in.asp. Acesso em: 26 fev. 2020.

LIMA E SILVA, C. H. Deriva simulada de dicamba na cultura do eucalipto. 2020. 63f. Dissertação (Mestrado em Ciências) – Instituto Federal de Educação, Ciência e Tecnologia Goiano, Rio Verde, 2020.

MARINHO, P.; SOUSA, R.; MEDEIROS, P.; SILVA, T.; GIONGO, M. Levantamento fitossociológico de plantas infestantes na área experimental da Universidade Federal do Tocantins submetida a diferentes cultivos. Agrarian Academy, v. 4, n. 7, p. 314-324, 2017.

MELHORANÇA FILHO, A. L.; PEREIRA, M. R. R.; MARTINS, D. Efeitos de subdoses de glyphosate sobre a germinação de sementes das cultivares de soja RR e convencional. Bioscience Journal, v.27, n.5, p.686-691, 2011.

MOHSENI-MOGHADAM, M.; DOOHAN, D. Response of bell pepper and broccoli to simulated drift rates of 2,4-D and dicamba. Weed Technology, v. 29, n. 2, p 226-232, 2015. Disponível em: https://doi.org/ 10.1614/WT-D-14-00105 Acesso em: 19 mai. 2022.

MUELLER, T. C.; WRIGHT, D. R.; REMUND, K. M. Effect of formulation and application time of day on detecting dicamba in the air under field conditions. Weed Science, v.61, n.4, p.586-593, 2013. Disponível em: https://doi.org/ 10.1614/WS-D-12-00178.1 Acesso em: 19 mai. 2022.

OLIVEIRA JR., R. S. Mecanismo de ação de herbicidas. In: OLIVEIRA JR., R.S.; CONSTANTIN, J.; INOUE, M.H. Biologia e manejo de plantas daninhas. Curitiba: Omnipax, 2011. p.141-192.

RAMOS, M. J. M.; MONNERAT, P. H.; PINHO, L. G. R. Leitura SPAD em abacaxizeiro imperial cultivado em deficiência de macronutrientes e de boro. Revista Brasileira Fruticultura, v. 35, n. 1, p. 277-281, 2013. Disponível em: https://doi.org/ 10.1590/S0100-29452013000100032 Acesso em: 19 mai. 2022.

SANTOS, M. P. Fitotoxidade causada por deriva simulada do herbicida dicamba na cultura da soja. 2017. 19 p. Trabalho de conclusão de curso (Bacharelado em Agronomia), Universidade Federal de Uberlândia, Uberlândia-MG.

SBCPD – SOCIEDADE BRASILEIRA DA CIÊNCIA DAS PLANTAS DANINHAS. Procedimentos para instalação, avaliação e análise de experimentos com herbicidas. Londrina: SBCPD, 1995. 42p.

SILVA, D. R. O.; SILVA, E. D. N.; AGUIAR, A. C. M.; NOVELLO, B. D.; SILVA, A. A. A.; BASSO, C. J. Drift of 2,4-D and dicamba applied to soybean at vegetative and reproductive growth stage. Ciência Rural, v. 48, n. 8, p.1-7, 2018. Disponível em: https://doi.org/ 10.1590/0103-8478cr20180179 Acesso em: 19 mai. 2022.

USEPA, US Environmental Protection Agency. Introduction to pesticide drift. Washington, DC: U.S. Environmental Protection Agency, 2019. Disponível em https://www.epa.gov/reducing-pesticide-drift/introduction-pesticide-drift. Acesso em: 16 ago. 2020.

VIDAL, R. A. Herbicidas: mecanismos de ação e resistência de plantas. Porto Alegre: VIDAL, R.A., 1997. 165 p.

VIEIRA, B. C.; LUCK, J. D.; AMUNDSEN, K. L.; WERLE, R.; GAINES, T. A.; KRUGER, G. R. Herbicide drift exposure leads to reduced herbicide sensitivity in Amaranthus spp. Scientific Reports, v. 10, n. 1, p.1-11, 2020. Disponível em: https://doi.org/ 10.1038/s41598-020-59126-9 Acesso em: 19 mai. 2022.

ZHOU, X.; ROTONDARO, S. L.; MA, M.; ROSSER, S. W.; OLBERDING, E. L.; WENDELBURG, B. M.; ADELFINSKAYA, Y. A.; BALCER, J. L.; BLEWETT, T. C.; CLEMENTS, B. Metabolism and residues of 2,4-dichlorophenoxyacetic acid in DAS-40278-9 Maize (Zea mays) transformed with aryloxyalkanoate dioxygenase-1 gene. Journal of Agricultural and Food Chemistry, v. 64, n. 40, p.7438-7444, 2016. Disponível em: https://doi.org/ 10.1021/acs.jafc.6b03104 Acesso em:19 mai. 2022.

Publicado

27-09-2023

Como Citar

Alessandro Muniz Pires, F., Pereira Santos, C., de Lira Ferreira, C., & Carvalho, S. J. P. de. (2023). Intoxication of newly implanted coffee plants by simulated drift of the dicamba herbicide. Revista Agrogeoambiental, 15(unico), e20231728. https://doi.org/10.18406/2316-1817v15nunico20231728