Alternative control of bacterial leaf blight of eucalypt using essential oils

Autores

  • Luis Carlos da Silva Soares Universidade Federal de Lavras https://orcid.org/0000-0003-2994-3603
  • Clinton Júnior Garcia Quintão Celulose Nipo-brasileira S.A – Cenibra
  • Larissa Nara Nascimento de Mirando Universidade Federal de Lavras
  • Natália Risso Fonseca Instituto Federal de Educação Ciência e Tecnologia de Minas Gerais

DOI:

https://doi.org/10.18406/2316-1817v16nunico20241921

Palavras-chave:

Plant Pathology. Xanthomonas citri pv. eucalyptorum comb. nov. Eucalyptus spp. Disease management.

Resumo

Bacterial leaf blight, attributed to Xanthomonas citri pv. eucalyptorum comb. nov., poses a significant threat to eucalypt nursery and field conditions in Brazil, resulting in substantial annual losses. While various disease management practices are employed, the quest for alternative control methods and environmentally friendly antimicrobial agents remains imperative. Thus, this project was developed to assess the potential efficacy in vitro of essential oils derived from tea tree (Melaleuca alternifolia), copaíba (Copaifera officinalis), and lemongrass (Cymbopogon spp.) against X. citri pv. eucalyptorum. The sensitivity of the bacteria to these oils was examined via antibiogram testing, with each antibiogram subjected to different oil dilutions (6.25 %, 10.00 %, 12.50 %, 25.00 %, 50.00 %, and 100.00 %). Inhibition zones were assessed to determine the inhibitory capacity of each compound on microbial growth, and statistical analysis was conducted using the Mann-Whitney test. Copaíba oil did not exhibit any inhibitory effect on the pathogen growth in vitro. Conversely, both lemongrass and tea tree oils displayed inhibitory effects on the target bacteria, with a minimum inhibitory concentration of 12.50 %. Furthermore, no significant distinctions were observed between the utilization of 12.50 % and 25.00 % concentrations of tea tree, neither between 25.00 % of lemongrass or 50.00 % of tea tree dilutions. These findings may pave the way for new strategies in pathogen management.

Referências

AGNOLIN, C. A.; OLIVO, C. J.; PARRA, C. L. C. Efeito do óleo de capim-limão (Cymbopogon flexuosus Stapf) no controle do carrapato dos bovinos. Revista Brasileira de Plantas Medicinais, v. 16, n. 1, p. 77–82, 2014.

ALVES, M. D. S.; MEDEIROS, E. A. D. P. DE; PEREIRA, C. DA S. B.; MOREIRA, Y. N.; CAPPATO, J. S.; OSÓRIO, R. P.; RIGER, C. J.; SANTOS, L. V.; MESQUITA, R. D.; PONTES, E. G.; SOUZA, M. A. A. Lemongrass essential oil: scientific bases for an agroecological approach to seed protection. Industrial Crops and Products, v. 199, e 116760, 2023.

ARAÚJO, V. C.; TEBALDI, N. D. Intervalo de aplicação de óleos essenciais no controle da mancha bacteriana do tomateiro. Summa Phytopathologica, v. 45, n. 2, p. 210–212, 2019.

AY, E.; GÉRARD, V.; GRAFF, B.; MORLETSAVARY, F.; MUTILANGI, W.; GALOPIN, C.; LALEVÉE, J. Citral photodegradation in solution: highlighting of a radical pathway in parallel to cyclization pathway. Journal of Agricultural and Food Chemistry, v. 67, n. 13, p. 3752-3760, 2019.

BANANI, H.; OLIVIERI, L.; SANTORO, K.; GARIBALDI, A.; GULLINO, M. L.; SPADARO, D. Thyme and savory essential oil efficacy and induction of resistance against Botrytis cinerea through priming of defense responses in apple. Foods, v. 7, n. 2, p. 1-8, 2018.

BINIAZ, Y.; KAVOOSI, G.; AFSHARIFAR, A. Antiviral activity and tobacco-induced resistance, mediated by essential oil nano-emulsions from Zataria multiflora and Satureja bakhtiarica. International Journal of Pest Management, v. 70, n. 3, p. 432–444, 2024.

BRUN, P.; BERNABÈ, G.; FILIPPINI, R.; PIOVAN, A. In vitro antimicrobial activities of commercially available tea tree (Melaleuca alternifolia) essential oils. Current Microbiology, v. 76, p. 108-116, 2019.

CARSON, C. F.; HAMMER, K. A.; RILEY, T. V. Melaleuca alternifolia (Tea Tree) oil: a review of antimicrobial and other medicinal properties. Clinical Microbiology Reviews, v. 19, n. 1, p. 50–62, 2006.

CHOWDAPPA, A.; KOUSALYA, S.; KAMALAKANNAN, A.; GOPALAKRISHNAN, C.; VENKATESAN, K. Efficacy of plant oils against Xanthomonas axonopodis pv. punicae. Advances in Research, v. 17, n. 1, p. 1-5, 2018.

CHUNG, M. Y.; KIM, H.; BEUCHAT, L. R.; RYU, J. H. Antimicrobial activities of plant essential oil vapours against Acidovorax citrulli and Xanthomonas campestris on Cucurbitaceae, Brassicaceae and Solanaceae seeds. Journal of Applied Microbiology, v. 132, n. 3, p. 2189- 2202, 2022.

CLINICAL AND LABORATORY STANDARDS INSTITUTE. Performance standards for antimicrobial susceptibility testing. 34. ed. CLSI supplement M100. Wayne, PA: CLSI, 2024.

CORDEIRO, L.; FIGUEIREDO, P.; SOUZA, H.; SOUSA, A.; ANDRADE-JÚNIOR, F.; MEDEIROS, D.; LIMA, E. Terpinen-4-ol as an antibacterial and antibiofilm agent against Staphylococcusaureus. International Journal of Molecular Sciences, v. 21, n. 12, p. 4531, 2020.

DALIO, R. J.; MAXIMO, H. J.; ROMA-ALMEIDA, R.; BARRETTA, J. N.; JOSÉ, E. M.; VITTI, A. J.; BLACHINSKY, B.; REUVENI, M.; PASCHOLATI, S. F. Tea tree oil induces systemic resistance against Fusarium wilt in banana and Xanthomonas infection in tomato plants. Plants, v. 1137, n. 9, p. 1-17, 2020. FERRAZ, H. G. M.; BADEL, J. L.; NEVES, Y. F.; ELOI, A. C. L.; VIDIGAL, P. M. P.; GUIMARAES, L. M. D. S.; ALFENAS, A. C. Xanthomonas species causing leaf blight on eucalypt plants in Brazil and transfer of Xanthomonas axonopodis pv. eucalyptorum to Xanthomonas citri pv. eucalyptorum comb. nov. Plant Pathology, v. 73, n. 3, p. 677-691, 2024.

GAO, S.; LIU, G.; LI, J.; CHEN, J.; LI, L.; LI, Z.; ZHANG, X.; ZHANG, S.; THORNE, R. F.; ZHANG, S. Antimicrobial activity of lemongrass essential oil (Cymbopogon flexuosus) and its active component citral against dual-species biofilms of Staphylococcus aureus and Candida species. Frontiers in Cellular and Infection Microbiology, v. 10, n. 3, p 1-17, 2020.

GUERRA, M. D. L.; GUERRA, Y. D. L.; SOUZA, E. B. D.; MARIANO, R. D. L. R. Essential plant oils in reducing the intensity of soft rot in Chinese cabbage. Revista Ciência Agronômica, v. 45, n. 4, p. 760-766, 2014.

GUPTA, I.; SINGH, R.; MUTHUSAMY, S.; SHARMA, M.; GREWAL, K.; SINGH, H. P.; BATISH, D. R. Plant essential oils as biopesticides: applications, mechanisms, innovations, and constraints. Plants, v. 12, n. 16, p. 1-26, 2023.

JIANG, N.; YAN, J.; LIANG, Y.; SHI, Y.; HE, Z.; WU, Y.; ZENG, Q.; LIU, X.; PENG, J. Resistance genes and their interactions with bacterial blight/leaf streak pathogens (Xanthomonas oryzae) in rice (Oryza sativa L.) - an updated review. Rice, v. 13, n. 3, p. 1-12, 2020.

JOHANSEN, B.; DUVAL, R.; SERGERE, J.C. First evidence of a combination of terpinen-4-ol and α-terpineol as a promising tool against ESKAPE pathogens. Molecules, v. 27, n. 21, p. 1-27, 2022.

KOLOZSVÁRINÉ NAGY, J.; MÓRICZ, Á. M.; BÖSZÖRMÉNYI, A.; AMBRUS, Á.; SCHWARZINGER, I. Antibacterial effect of essential oils and their components against Xanthomonas arboricola pv. pruni revealed by microdilution and direct bioautographic assays. Frontiers in Cellular and Infection Microbiology, v. 13, e 1204027, p. 1-9, 2023.

LOPES, V. C.; BENATO, E. A.; SILVA, B. M. P. D.; VEIGA, J. C. D.; BRON, I. U.; CIA, P. Antifungal activity of lemongrass and thyme essential oils and effect on gray mold control and post harvest quality of ‘Italia’ grape. Bragantia, v. 82, e20220202, p. 1-13, 2023.

LUCAS, G. C.; et al. Antibacterial activity of essential oils on Xanthomonas vesicatoria and control of bacterial spot in tomato. Pesquisa Agropecuária Brasileira, v. 47, n. 3, p. 351-359, 2012.

MAČIONIENĖ, I.; ČEPUKOIT, D.; ŠALOMSKIENĖ, J.; ČERNAUSKAS, D.; BUROKIENĖ, D.; ŠALAŠEVIČIENĖ, A. Effects of natural antimicrobials on Xanthomonas strains growth. Horticulturae, v. 8, n. 1, p. 1-13, 2021.

MARIN, V. R.; ZAMUNER, C. F. C.; HYPOLITO, G. B.; FERRAREZI, J. H.; ALLEONI, N.; CACCALANO, M. N.; FERREIRA, H.; SASS, D. C. Antibacterial activity of Cymbopogon species essential oils against Xanthomonas citri and their use in post-harvest treatment for citrus canker management. Letters in Applied Microbiology, v. 77, n. 5, ovae041, 2024.

MARTINAZZO, A. P.; BRAGA, R. D. O.; TEODORO, C. E. D. S. Alternative control of phytopathogenic bacteria with essential oils of Elionurus latiflorus and Cymbopogon flexuosus. Ciência e Natura, v. 44, n. 1, p. 1-27, 2022.MONDELLO, F.; FONTANA, S.; SCATURRO, M.;

GIROLAMO, A.; COLONE, M.; STRINGARO, A.; DI VITO, M.; RICCI, M. L. Terpinen-4-ol, the main bioactive component of tea tree oil, as an innovative antimicrobial agent against Legionella pneumophila. Pathogens, v. 11, n. 6, p. 1-17, 2022.

MONTEIRO, V. L. B.; MELO, F. L.; ROSSATO, M. Xanthomonas citri infecting teak (Tectona grandis) in Brazil, characterization and copper resistance. Tropical Plant Pathology, v. 48, n. 4, p. 417–430, 2023.

NÓBREGA, L. P.; FRANÇA, K. R. da S.; LIMA, T. S.; ALVES, F. M. de F.; UGULINO, A. L. N.; SILVA, A. M.; CARDOSO, T. A. L.; RODRIGUES, A. P. M.; MENDONÇA JÚNIOR, A. F. de. In vitro fungitoxic potential of copaiba and Eucalyptus essential oils on phytopathogens. Journal of Experimental Agriculture International, v. 29, n 3, p. 1-10, 2019.

PEREIRA, R. B.; LUCAS, G. C.; PERINA, F. J.; ALVES, E. Essential oils for rust control on coffee plants. Ciência e Agrotecnologia, v. 36, n. 1, p. 16–24, 2012.

RAMOS, E.T.A.; BORGES, K.C.A. S.; TEBALDI, V.M.R. Atividade bactericida dos extratos hidroalcoólicos de hera-roxa e capim-limão e dos óleos essenciais de orégano, tomilho e melaleuca sobre Xanthomonas albilineans. Cadernos UniFOA, v. 7, n. 19, p. 65-71, 2017.

RAVEAU, R.; FONTAINE, J.; SAHRAOUI, A.L.H. Essential oils as potential alternative biocontrol products against plant pathogens and weeds: a review. Foods, v. 9, n. 3, p. 365, 2020.

REUVENI, M.; SANCHES, E.; BARBIER, M. Curative and suppressive activities of essential tea tree oil against fungal plant pathogens. Agronomy, v. 10, n. 4, p. 1-31, 2020.

Publicado

13-11-2024

Como Citar

Luis Carlos da Silva Soares, Júnior Garcia Quintão, C., Nara Nascimento de Mirando , L., & Fonseca, N. R. (2024). Alternative control of bacterial leaf blight of eucalypt using essential oils. Revista Agrogeoambiental, 16(unico), e20241921. https://doi.org/10.18406/2316-1817v16nunico20241921