Tolerance of fry of three tilapia varieties exposed to low temperatures

Authors

  • Cicero Eduardo Rezende Instituto Federal de Educação Ciencias e Tecnologia do Sul de Minas Gerais- Campus Inconfidentes
  • Diana Carla Oliveira Fernandes Federal University of Lavras
  • Danielle Cristina Pereira Marçal Federal University of Lavras
  • Rafael Vilhena Reis Neto São Paulo State University
  • Renan Rosa Paulino Federal University of Lavras
  • Rilke Tadeu Fonseca Freitas Federal University of Lavras

DOI:

https://doi.org/10.18406/2316-1817v16nunico20241900

Keywords:

Cold resistance, Fingerlings, Genetic Groups, Oreochromis niloticus

Abstract

As tilapia aquaculture expands globally, cold sensitivity remains a critical issue, leading to significant losses due to poor growth, disease susceptibility, and high mortality. This study evaluated the cold tolerance in fry of three tilapia varieties, incorporating a comprehensive analysis of 3240 specimens. The fry, segregated by variety into different tanks, were observed during summer to assess their performance. The study focused on two commercially prominent varieties, known for their rapid weight gain, and a third variety developed by the Federal University of Lavras, specifically bred for resilience to local climatic conditions. Following a 15-day acclimation period in experimental tanks, the fry were monitored for feeding to apparent satiety. Daily assessments included counting mortalities and measuring water temperature and dissolved oxygen levels. Survival data were analyzed using multivariate Cox regression, with survival curves derived via the Kaplan-Meier method. Lifespan predictions from these curves were compared using the log-rank test. Results indicated that older fry were more resilient to cold stress. Notably, the MGTUP variety, bred for local environmental adaptability, demonstrated superior cold tolerance. This variety also exhibited the lowest mortality rates across all age groups. These findings suggest that utilizing locally adapted tilapia varieties can significantly mitigate losses in aquaculture, especially in cold-prone regions.

References

ATWOOD, H. L.; TOMASSO, J. R.; WEBB, K.; GATLIN, D. M. Low-temperature tolerance of Nile tilapia, Oreochromis niloticus: effects of environmental and dietary factors. Aquaculture Research, v. 34, p. 241-51, 2003. https:// doi.org/ 10. 1046/ j. 1365- 2109. 2003. 00811. x

BEHRENDS, L. L.; KINGSLEY, J. B.; BULLS, M. J. Cold tolerance in maternal mouthbrooding tilapias: heritability estimates and correlated growth responses at suboptimal temperatures. Aquaculture, v. 85, n. 1–4, p. 271-280, 1990. https:// doi. org/ 10. 1016/ 0044- 8486 (90) 90026- J

BENDIKSEN, E. Å. Environmental effects on lipid nutrition of farmed Atlantic salmon (Salmo salar L.) parr and smolts. 2003. 128p. Tese (doutorado). Norwegian University of Science and Technology, Trondhrim. https://ntnuopen. ntnu.no/ ntnu- xmlui/ bitstream/handle/ 11250/244625/ 125419_ FULLTEXT01. pdf? sequence=1& isAllowed= y. Acesso em: 10 set. 2023.

BEZERRA, K. S.; SANTOS, A. J. G.; LEITE, M. R.; SILVA, A. M. D.; LIMA, M. R. D. Crescimento e sobrevivência da tilápia chitralada submetida a diferentes fotoperíodos. Pesquisa Agropecuária Brasileira, v. 43, p. 737-743, 2008. https:// doi.org/ 10. 1590/ S0100- 204X 2008 0006 00010

BIRO, P. A.; MORTON, A.E.; POST, J. R.; PARKINSON, E. A. Over-winter lipid depletion and mortality of age-0 rainbow trout Oncorhynchus

mykiss). Canadian Journal of Fisheries and Aquatic Sciences, v. 61, p. 1513-1519, 2004. https:// doi. org/ 10. 1139/ f04- 083 BROWN, K. H.; LEE, R. W.; THORGAARD, G. H. Use of androgenesis for estimating maternal and mitochondrial genome effects on development and oxygen con ption in rainbow trout, Oncorhynchus mykiss. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, v. 143, p. 415-21, 2006. https:// doi.org/ 10. 1016/ j. cbpb. 2005. 12. 015

CHARO-KARISA, H.; REZK, M. A.; BOVENHUIS, H.; KOMEN, H. Heritability of cold tolerance in Nile tilapia, Oreochromis niloticus, juveniles. Aquaculture, v. 249, p. 115-123, 2005. https://doi. org/ 10. 1016/ j. aquaculture. 2005. 04. 029

CHARO-KARISA, H.; REZK, M. A.; BOVENHUIS, K. Effects of rearing conditions on lowtemperature tolerance of Nile tilapia, Oreochromis niloticus, juveniles. IN: BOLIVAR, R.; MAIR, G.; FITZSIMMONS, K. (Eds.). INTERNATIONAL SYMPOSIUM ON TILAPIA IN AQUACULTURE, 6., Manila. Proceedings… Manila, Philippines,2004. 41p. https://hdl. handle. net/ 20. 500.12348/ 2092.

COX, D. R. Models and life-tables regression. Journal of Royal Statistical Society. Series B: Statistical Methodology, v. 34, p. 187-220, 1972. https:// doi. org/ 10. 1111/ j. 2517- 6161.1972. tb00899. x

ECKMANN, R. Overwinter changes in mass and lipid content of Perca fluviatilis and Gymnocephalus cernuus. Journal of Fish Biology, v. 65, p. 1498-1511, 2004. https://doi. org/ 10. 1111/ j. 0022- 1112. 2004. 00553. x

EFRON, B. Logistic regression, survival analysis, and the Kaplan-Meier curve. Journal of the American Statistical Association, v. 83, p. 414-425, 1988. https:// www. tandfonline. com/ doi/abs/ 10. 1080/ 01621459. 1988. 1047 8612

FAO. Food and Agriculture Organization of the United Nations. The state of world fisheries and aquaculture, 2002. https:// www. fao. org/ 3/cc0461en/ cc0461en. pdf

FERNANDES, E. M.; ALMEIDA, L. C. F.; HASHIMOTO, D. T.; LATTANZI, G. R.; GERVAZ, W. R.; LEONARDO, A. F.; REIS NETO, R. V. Survival of purebred and hybrid Serrasalmidae under low water temperature conditions. Aquaculture, v. 497, p. 97-102, 2018. https://doi. org/ 10. 1016/ j. aquaculture. 2018. 07. 030

HASHIM, R. Sustaining aquaculture development: the feeds and feeding connection. In: INTERNATIONAL SYMPOSIUM ON IMPROVED SUSTAINABILITY OF FISH PRODUCTION SYSTEMS AND APPROPRIATE TECHNOLOGIES FOR UTILIZATION–SUSTAIN FISH. Cochin, India, 2005. Proceedings… 12.p. http:// eprints. usm. my/ 130/ 1/ Sustaining_Aquaculture_ Development_ The_ Feeds_ And_Feeding_ Connection. pdf.

HE, Y.; WU, X.; ZHU, Y.; LI, H.; LI, X.; YANG, D. Effect of rearing temperature on growth and thermal tolerance of Schizothorax (Racoma) kozlovi larvae and juveniles. Journal of Thermal Biology, v. 46, p. 24-30, 2014. https:// doi. org/10. 1016/ j. jtherbio. 2014. 09. 009

IBARZ, A.; BLASCO, J.; BELTRÁN, M.; GALLARDO, M. A.; SÁNCHEZ, J.; SALA, R.; FERNÁNDEZ-BORRÀS, J. Cold-induced alterations on proximate composition and fatty acid profiles of several tissues in gilthead sea bream (Sparus aurata). Aquaculture, v. 249, p. 477-486, 2005. https:// doi. org/ 10. 1016/ j.aquaculture. 2005. 02. 056

JIAN, C. Y.; CHENG, S. Y.; CHEN, J. C. Temperature and salinity tolerances of yellowfin sea bream, Acanthopagrus latus, at different salinity and temperature levels. Aquaculture Research, v. 34, p. 175-185, 2003. https:// doi.org/ 10. 1046/ j. 1365- 2109. 2003. 00800. x KUBITZA, F. Tilápia: tecnologia e planejamento na produção comercial. 1.ed. Jundiaí, 2000. 289 p.

LEMBI, C. A. Limnology, lake and river ecosystems. Journal of Phycology, v. 37, p. 1146-1147, 2001. https:// doi. org/ 10. 1046/j. 1529- 8817. 2001. 37602. x

LEMLY, A. D. Wastewater discharges may be most hazardous to fish during winter. Environmental Pollution, v. 93, p. 169-174, 1996. https://doi. org/ 10. 1016/ 0269- 7491 (96) 000 25- 5Get rights and content

MAZEAUD, M. M.; MAZEAUD, F.; DONALDSON, E. M. Primary and secondary effects of stress in fish: some new data with a general review. Transactions of the American Fisheries Society, v. 106, p. 201-212, 1977. https:// doi. org/ 10.1577/ 1548- 8659 (1977) 106 <201: PASEOS>2. 0. CO;2

MOURA, G. S.; OLIVEIRA, M. G. A.; LANNA, E. T. A.; JÚNIOR, A. M.; MACIEL, C. M. R. R. Desempenho e atividade de amilase em tilápias do-Nilo submetidas a diferentes temperaturas. Pesquisa Agropecuária Brasileira, v. 42, p. 1609-1615, 2007. https:// doi. org/ 10. 1590/S0100- 204X 2007 0011 00013

NITZAN, T.; SLOSMAN, T.; GUTKOVICH, D.; WELLER, J. I.; HULATA, G.; ZAK, T.; BENET, A.; CNAANI, A. Maternal effects in the inheritance of cold tolerance in blue tilapia (Oreochromis aureus). Environmental Biology of Fishes, v. 99, p. 975-981, 2016. https:// doi. org/ 10. 1007/s10641- 016- 0539- 0

NYTRØ, A. V.; VIKINGSTAD, E.; FOSS, A.; HANGSTAD, T. A.; REYNOLDS, P.; ELIASSEN, G.; IMSLAND, A. K. The effect of temperature and fish size on growth of juvenile lumpfish (Cyclopterus lumpus L.). Aquaculture. v. 434, p. 296-302, 2014. https:// doi. org/ 10. 1016/ j.aquaculture. 2014. 07. 028

OLIVEIRA, L. A. A. G.; ALMEIDA, A. M.; PANDOLFO, P. S. V.; SOUZA, R. M. D.; FERNANDES, L. F. L.; GOMES, L. C. Crescimento e produtividade de juvenis de robalo-peva a diferentes temperaturas e taxas de alimentação. Pesquisa Agropecuária Brasileira, v. 48, p. 857-862, 2013. https:// ainfo. cnptia. embrapa. br/digital/ bitstream/ item/ 92997/ 1/ Crescimento- eprodutividade-de- juvenis. pdf

PANG, X.; YUAN, X. Z.; CAO, Z. D.; FU, S. J. The effects of temperature and exercise training on swimming performance in juvenile qingbo (Spinibarbus sinensis). Journal of Comparative Physiology B, v. 183 n. 1, p. 99-108, 2013. https:// doi. org/ 10. 1007/ s00360- 012- 0690- 7

PEIXE, BR. Anuário Brasileiro da Piscicultura: PEIXE BR, 2023. Associação Brasileira da Piscicultura, 2023. 126 p.

REZENDE, C. E.; PERAZZA, C. A.; FREITAS, R. T. F. D.; HALLERMAN, E.; HILSDORF, A. W. S. Use of ultrasonographic imaging for non-invasive carcass yield prediction in Nile tilapia (Oreochromis niloticus). Aquaculture International, v. 31, n. 5, p. 2763-2778, 2023. https:// doi. org/ 10. 1007/ s10499- 023- 01109- 4

SARDELLA, B. A.; MATEY, V.; BRAUNER, C. J. Coping with multiple stressors: physiological mechanisms and strategies in fishes of the Salton Sea. Lake and Reservoir Management, v. 23, p. 518-527, 2007. https:// doi. org/ 10. 1080/0743 8140 7093 54035

SIFA, L.; CHENHONG, L.; DEY, M.; GAGALAC, F.; DUNHAM, R. Cold tolerance of three strains of Nile tilapia, Oreochromis niloticus. Aquaculture,v. 213, p. 123-129, 2002. https:// doi. org/ 10.1016/ S0044- 8486 (02) 000 68- 6

SIGNOR, A. Desempenho produtivo e resistência ao estresse pelo frio da tilápia do Nilo alimentada com dietas suplementadas com levedura autolisada e zinco. 2007. 103p. Dissertation (master), Universidade Estadual Paulista, Jaboticabal. https:// repositorio. unesp.br/ bitstream/ handle/ 11449/ 86717/ signor_ a_me_ jabo. pdf? sequence= 1& isAllowed= y

SILVA, B. C.; PEREIRA, A.; MARCHIORI, N. D. C.; MARIGUELE, K. H.; MASSAGO, H.; KLABUNDE, G. H. F. Cold tolerance and performance of selected Nile tilapia for suboptimal temperatures. Aquaculture Research, v. 52, p. 1071-1077, 2021. https:// doi. org/ 10. 1111/ are. 14962

VERAS, G. C.; MURGAS, L. D. S.; ZANGERONIMO, M. G.; ROSA, P. V.; LEON, J. A. S.; SALARO, A. L. Fotoperíodo sobre parâmetros fisiológicos relacionados ao estresse em alevinos de tilápia-do-nilo. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, v. 65, p. 1434- 1440, 2013. https:// doi. org/ 10. 1590/ S0102- 0935 2013 000 500 023

WALBERG, E. Effect of increased water temperature on warm water fish feeding behavior and habitat use. Journal of Undergraduate Research at Minnesota State University, v. 11, p. 13, 2011. https:// cornerstone. lib. mnsu. edu/jur/ vol11/ iss1/ 13/

Downloads

Published

2024-11-13

How to Cite

Rezende, C. E., Fernandes, D. C. O. ., Marçal, D. C. P. ., Reis Neto, R. V. ., Paulino, R. R. ., & Freitas, R. T. F. . (2024). Tolerance of fry of three tilapia varieties exposed to low temperatures. Revista Agrogeoambiental, 16(unico), e20241900. https://doi.org/10.18406/2316-1817v16nunico20241900