Broad spectrum effectiveness of pyroxasulfone + flumioxazin for weed control in pre-emergence of soybean
DOI:
https://doi.org/10.18406/2316-1817v17nunico20251962Keywords:
Herbicides, Inhibitors of biosynthesis of very-long-chain fatty acids (VLCFA), Protoporphyrinogen oxidase (PPO) inhibitors, Digitaria insularis, Amaranthus hybridusAbstract
It is necessary to search for solutions to control weeds, focusing on pre-emergent herbicides. Pyroxasulfone + flumioxazin is believed to be effective in controlling weeds in soybean, as well as other pre-emergent herbicides used in this crop. The aim of this study was to evaluate the effectiveness of the pre-formulated mixture pyroxasulfone + flumioxazin, for application in pre-emergence of soybean. Experiment was conducted in two trials in the 2020-2021 growing season. The treatments consisted of non-treated control, pyroxasulfone + flumioxazin (90 + 60 g ai ha-1), imazethapyr + flumioxazin (100 g ae ha-1 + 50 g ai ha-1), diclosulam (29.4 g ai ha-1), sulfentrazone + diuron (175 + 350 g ai ha-1) and s-metolachlor (1,440 g ai ha-1). Trial 1 was infested with Digitaria insularis (sourgrass), Ipomoea spp., Urochloa plantaginea (alexandergrass), and Amaranthus hybridus (smooth pigweed). Trial 2 was infested with sourgrass, morning glory, other grasses, and other broadleaves. Weed control, soybean injury and yield were evaluated. Pyroxasulfone + flumioxazin stood out, which was the only one among the best in all evaluations, demonstrating its broad spectrum of action. Also highlighted are the other formulated premixes, imazethapyr + flumioxazin and sulfentrazone + diuron. Diclosulam was almost always among the most effective in controlling broadleaves, but with the worst performance in controlling grasses, the opposite was observed for s-metolachlor. Herbicides are effective in controlling weeds, with emphasis on pyroxasulfone + flumioxazin, imazethapyr + flumioxazin and sulfentrazone + diuron, effective in controlling sourgrass, smooth pigweed, morning glory, alexandergrass, among others.
References
ALBRECHT, A.J.P.; ALBRECHT, L.P.; ALVES, S.N.R.; SILVA, A.F.M.; SILVA, W.O.; LORENZETTI, J.B.; DANILUSSI, M.T.Y.; BARROSO, A.A.M. Pre-sowing application of combinations of burndown and pre-emergent herbicides for Conyza spp. control in soybean. Agronomía Colombiana, v. 39, n. 1, p. 121-128, 2021. < https://doi.org/10.15446/agron.colomb.v39n1.89545>
ALBRECHT, A.J.P.; ALBRECHT, L.P.; SILVA, A.F.M.; RAMOS, R.A.; CORRÊA, N.B.; CARVALHO, M.G.; LORENZETTI, J.B.; DANILUSSI, M.T.Y. Control of Conyza spp. with sequential application of glufosinate in soybean pre-sowing. Ciência Rural, v. 50, n. 9, e20190868, 2020. <https://doi.org/10.1590/0103-8478cr20190868>
ALONSO, D.G.; CONSTANTIN, J.; OLIVEIRA JUNIOR, R.S.; ARANTES, J.G.Z.; CAVALIERI, S.D.; SANTOS, G.; RIOS, F.A.; FRANCHINI, L.H.M. Selectivity of glyphosate tank mixtures for RR soybean. Planta Daninha, v. 29, n. 4, p. 929-937, 2011. <https://doi.org/10.1590/S0100-83582011000400024>
BARBOSA, J.R.; ALBRECHT, A.J.P.; ALBRECHT, L.P.; GARCIA, F.C.; MORI, L.G.; SILVA, A.F.M.; FAVORETTO, M.; PICCIN, E.S. Selectivity of pre-emergence herbicides applied at sowing or early post-emergence of soybean. International Journal of Agriculture and Biology, v. 29, n. 6, p. 431-436, 2023. <https://doi.org/10.17957/IJAB/15.2050>
BARNES, E.R.; KNEZEVIC, S.Z.; SIKKEMA, P.H.; LINDQUIST, J.L.; JHALA, A.J. Control of glyphosate-resistant common ragweed (Ambrosia artemisiifolia L.) in glufosinate-resistant soybean Glycine max (L.) Merr. Frontiers in Plant Science, v. 8, ID 1455, 2017. <https://doi.org/10.3389/fpls.2017.01455>
BAUER, F.E.; ALBRECHT, A.J.P.; ALBRECHT, L.P.; SILVA, A.F.M.; BARROSO, A.A.M.; DANILUSSI, M.T.Y. Digitaria insularis control by using herbicide mixtures application in soybean pre-emergence. Revista Facultad Nacional de Agronomía Medellín, v. 74, n. 1, p. 9403-9411, 2021. <https://doi.org/10.15446/rfnam.v74n1.89032>
BEAM, S.C.; FLESSNER, M.L.; PITTMAN, K.B. Soybean flower and pod response to fomesafen, acifluorfen, and lactofen. Weed Technology, v. 32, n. 4, p. 444-447, 2018. <https://doi.org/10.1017/wet.2018.37>
BRAZ, G.B.P.; OLIVEIRA JUNIOR, R.S.; ZOBIOLE, L.H.S.; RUBIN, R.S.; VOGLEWEDE, C.; CONSTANTIN, J.; TAKANO, H.K. Sumatran fleabane (Conyza sumatrensis) control in no-tillage soybean with diclosulam plus halauxifen-methyl. Weed Technology, v. 31, n. 2, p. 184-192, 2017. <https://doi.org/10.1017/wet.2016.28>
CANTU, R.M.; ALBRECHT, L.P.; ALBRECHT, A.J.P.; SILVA, A.F.M.; DANILUSSI, M.T.Y.; LORENZETTI, J.B. Herbicide alternative for Conyza sumatrensis control in pre-planting in no-till soybeans. Advances in Weed Science, v. 39, e2021000025, 2021. <https://doi.org/10.51694/AdvWeedSci/2021;39:000012>
CORREIA, N.M. Management and development of fleabane plants in central Brazil. Planta Daninha, v. 38, e020238215, 2020. <https://doi.org/10.1590/S0100-83582020380100084>
DE SANCTIS, J.H.; BARNES, E.R.; KNEZEVIC, S.Z.; KUMAR, V.; JHALA, A.J. Residual herbicides affect critical time of Palmer amaranth removal in soybean. Agronomy Journal, v. 113, n. 2, p. 1920-1933, 2021. <https://doi.org/10.1002/agj2.20615>
DUKE, S.O. The history and current status of glyphosate. Pest Management Science, v. 74, n. 5, p. 1027-1034, 2018. <https://doi.org/10.1002/ps.4652>
FEHR, W.R.; CAVINESS, C.E.; BURMOOD, D.T.; PENNINGTON, J.S. Stage of development descriptions for soybeans, Glycine max (L.) Merrill. Crop Science, v. 11, n. 6, p. 929-931, 1971. <https://doi.org/10.2135/cropsci1971.0011183X001100060051x>
FERREIRA, D.F. Sisvar: a computer statistical analysis system. Ciência e Agrotecnologia, v. 35, n. 6, p. 1039-1042, 2011. <https://doi.org/10.1590/S1413-70542011000600001>
GARCIA, F.C.; ALBRECHT, A.J.P.; ALBRECHT, L.P.; BARBOSA, J.R.; SILVA, A.F.M.; LARINI, W.F.; MORENO, G.; BARROSO, A.A.M. Efficacy of pre-emergence herbicides in controlling Sumatran fleabane (Conyza sumatrensis) in the off-season. Agronomy Research, v. 21, n. 3, p. 1119-1127, 2023. <https://doi.org/10.15159/AR.23.042>
GOLUBEV, A.S. Weed control with diclosulam in soybean. Emirates Journal of Food and Agriculture, v. 33, n. 3, p. 187-194, 2021. <https://doi.org/10.9755/ejfa.2021.v33.i3.2644>
GREEN, J.M.; SIEHL, D.L. History and outlook for glyphosate-resistant crops. Reviews of Environmental Contamination and Toxicology, v. 255, p. 67-91, 2021. <https://doi.org/10.1007/398_2020_54>
HEDGES, B.K.; SOLTANI, N.; HOOKER, D.C.; ROBINSON, D.E.; SIKKEMA, P.H. Control of glyphosate-resistant waterhemp with two-pass weed control strategies in glyphosate/dicamba-resistant soybean. American Journal of Plant Sciences, v. 9, n. 7, p. 1424-1432, 2018. <https://doi.org/10.4236/ajps.2018.97104>
HOUSTON, M.M.; BARBER, L.T.; NORSWORTHY, J.K.; ROBERTS, T.L. Evaluation of preemergence herbicide programs for control of protoporphyrinogen oxidase-resistant Amaranthus palmeri in soybean. International Journal of Agronomy, v. 2021, ID 6652382, 2021. <https://doi.org/10.1155/2021/6652382>
JOVANOVIĆ, D.; CUVACA, I.; SCOTT, J.; KNEŽEVIĆ, S. Critical time for weed removal in dicamba tolerant soybean as influenced by pre emergence herbicides. Acta Herbologica, v. 29, n. 1, p. 55-62, 2020. <https://doi.org/10.5937/29actaherb-26809>
KNEZEVIC, S.Z.; PAVLOVIC, P.; OSIPITAN, O.A.; BARNES, E.R.; BEIERMANN, C.; OLIVEIRA, M.C.; LAWRENCE. N.; SCOTT, J.E.; JHALA, A. Critical time for weed removal in glyphosate-resistant soybean as influenced by preemergence herbicides. Weed Technology, v. 33, n. 3, p. 393-399, 2019. <https://doi.org/10.1017/wet.2019.18>
MAHONEY, K.J.; SHROPSHIRE, C.; SIKKEMA, P.H. Weed management in conventional-and no-till soybean using flumioxazin/pyroxasulfone. Weed Technology, v. 28, n. 2, p. 298-306, 2014. <https://doi.org/10.1614/WT-D-13-00128.1>
McNAUGHTON, K.E.; SHROPSHIRE, C.; ROBINSON, D.E.; SIKKEMA, P.H. Soybean (Glycine max) tolerance to timing applications of pyroxasulfone, flumioxazin, and pyroxasulfone + flumioxazin. Weed Technology, v. 28, n. 3, p. 494-500, 2014. <https://doi.org/10.1614/WT-D-14-00016.1>
NAKATANI, M.; YAMAJI, Y.; HONDA, H.; UCHIDA, Y. Development of the novel pre-emergence herbicide pyroxasulfone. Journal of Pesticide Science, v. 41, n. 3, p. 107-112, 2016. <https://doi.org/10.1584/jpestics.J16-05>
PERKINS, C.M.; GAGE, K.L.; NORSWORTHY, J.K.; YOUNG, B.G.; BRADLEY, K.W.; BISH, M.D.; HAGER, A.; STECKEL, L.E. Efficacy of residual herbicides influenced by cover-crop residue for control of Amaranthus palmeri and A. tuberculatus in soybean. Weed Technology, v. 35, n. 1, p. 77-81, 2021. <https://doi.org/10.1017/wet.2020.77>
RIZZARDI, M.A.; ROCKENBACH, A.P.; SCHNEIDER, T. Residual herbicides increase the period prior to interference in soybean cultivars. Planta Daninha, v. 38, e020222194, 2020. <https://doi.org/10.1590/S0100-83582020380100091>
RONCATTO, E.; BARROSO, A.A.M.; ALBRECHT, A.J.P.; NOVELLO, B.D.; SILVA, R.G.; BACKES, C.B. Shortening critical period of weed control at soybean by residual herbicide mixtures. Advances in Weed Science, v. 41, e020220075, 2023. < https://doi.org/10.51694/AdvWeedSci/2023;41:00009>
SARANGI, D.; JHALA, A.J. Palmer amaranth (Amaranthus palmeri) and velvetleaf (Abutilon theophrasti) control in no-tillage conventional (non–genetically engineered) soybean using overlapping residual herbicide programs. Weed Technology, v. 33, n. 1, p. 95-105, 2019. <https://doi.org/10.1017/wet.2018.78>
SOLTANI, N.; BROWN, L.R.; SIKKEMA, P.H. Weed control in corn and soybean with group 15 (VLCFA Inhibitor) herbicides applied preemergence. International Journal of Agronomy, v. 2019, ID 8159671, 2019. <https://doi.org/10.1155/2019/8159671>
SONG, J.S.; CHUNG, J.H.; LEE, K.J.; KWON, J.; KIM, J.W.; IM, J.H.; KIM, D.S. Herbicide-based weed management for soybean production in the Far Eastern region of Russia. Agronomy, v. 10, n. 11, ID 1823, 2020. <https://doi.org/10.3390/agronomy10111823>
TANETANI, Y.; KAKU, K.; KAWAI, K.; FUJIOKA, T.; SHIMIZU, T. Action mechanism of a novel herbicide, pyroxasulfone. Pesticide Biochemistry and Physiology, v. 95, n. 1, p. 47-55, 2009. <https://doi.org/10.1016/j.pestbp.2009.06.003>
UNDERWOOD, M.G.; SOLTANI, N.; ROBINSON, D.E.; HOOKER, D.C.; SWANTON, C.J.; VINK, J.P.; SIKKEMA, P.H. Weed control, environmental impact, and net revenue of two-pass weed management strategies in dicamba-resistant soybean. Canadian Journal of Plant Science, v. 98, n. 2, p. 370-379, 2018. <https://doi.org/10.1139/cjps-2017-0147>
VELINI, D.E.; OSIPE, R.; GAZZIERO, D.L.P. Procedimentos para instalação, avaliação e análise de experimentos com herbicidas. Londrina, PR: Sociedade Brasileira da Ciência das Plantas Daninhas, 1995. 42p.
WARRICK, A.W.; NIELSEN, D.R. Spatial variability of soil physical properties in the field. In: HILLEL, D. Applications of soil physics. Cambridge, MA: Academic Press, 1980. p. 319-344.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Leandro Paiola Albrecht, Alfredo Junior Paiola Albrecht, André Felipe Moreira Silva, Fernando Luiz Buss Tupich, Diosef Huston Alves Ferrari, Willian Felipe Larini, Luís Henrique Glaeser Benincá, Vanessa Hort de Oliveira

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright Notice
All of the Revista Agrogeoambiental’s articles and reviews are free to access immediately after its publication.
When submitting a paper to Revista Agrogeoambiental, the authors accept the following copyright policies:
- Authors maintain the copyrights and grant the journal the right of first publication. The paper is licensed under the Creative Commons Attribution License, which allows the sharing of the work as long as it acknowledges the author and the initial publication in this journal.
- Authors are free and encouraged to store their work elsewhere, for instance in institutional repositories or websites such as academia.edu to increase circulation.
- Authors assume their authorship and are responsible for the originality and opinions in their papers.
- After the article acceptance and publishing by Revista Agrogeoambiental, the authors allow the editor to publicize the work in other medias.
- Moral rights are granted to the authors.