Agronomic performance of Conkesta E3® soybean to increasing doses of 2,4-D herbicide
DOI:
https://doi.org/10.18406/2316-1817v17nunico20252000Keywords:
Glycine max, Phytotoxicity, BiotechnologyAbstract
Soybean (Glycine max (L.)) is a dicotyledonous plant from the Fabaceae family, originally from East Asia, and today, Brazil is the largest global producer of this legume. However, over the past few decades, various challenges in weed control have led to significant economic losses for soybean producers. As a response, new technologies have been introduced to address this issue. Among these innovations, multiple resistance biotechnology stands out, enabling producers to use glyphosate, 2,4-D, and glufosinate-ammonium in soybean crop. The present study, conducted at IFSULDEMINAS Campus Inconfidentes, aimed to evaluate the performance of soybean cultivars carrying this new technology when subjected to increasing doses of 2,4-D, commercially known as Enlist® Colex-D. The experiment utilized two commercial soybean cultivars (B5710 CE and 98R30 CE), with a randomized complete block design (RCBD) in a 2x9 factorial scheme, involving 2 cultivars and 9 different herbicide dosages per cultivar, totaling 18 treatments and 4 replications. The herbicide doses ranged from 0 g a.i. ha-1 to elevated levels, with the highest dose being 3648 g a.i. ha-1. The variables assessed included phytotoxicity, chlorophyll index, plant height, thousand-grain weight, and grain yield. Increasing herbicide doses gradually induced phytotoxicity, but statistically, there was no significant impact on the final grain yield of the crop in both cultivars.
References
ABDALA, L. J.; OTEGUI, M. E.; MAURO, G. On-farm soybean genetic progress and yield stability during the early 21st century: a case study of a commercial breeding program in Argentina and Brazil. Field Crops Research, v. 308, p. 109277, 2024. https://doi.org/10.1016/j.fcr.2024.109277.
ADEGAS, F. S.; CORREIA, N. M.; SILVA, A. F. da; CONCENÇO, G.; GAZZIERO, D. L. P.; DALAZEN, G. Glyphosate-resistant (GR) soybean and corn in Brazil: past, present, and future. Advances in Weed Science, v. 40, n. 1, p. 1-12, 2022. https://doi.org/10.51694/advweedsci/2022;40:seventy-five004.
ALBRECHT, A. J. P.; ALBRECHT, L. P.; BARROSO, A. A. M.; CESCO, V. J. S.; KRENCHINSKI, F. H.; SILVA, A. F. M.; VICTORIA FILHO, R. Glyphosate tolerant soybean response to different management systems. Journal of Agricultural Science, v. 10, n.1, p. 204-216, 2018. https://doi.org/10.5539/jas.v10n1p204.
ALVARES, C. A.; STAPE, J. L.; SENTELHAS, P. C.; GONÇALVES, J. L. M.; SPAROVEK, G. Köppen's climate classification map for Brazil. Meteorologische Zeitschrift, v. 22, n. 6, p. 711-728, 2014. https://doi.org/10.1127/0941-2948/2013/0507.
AYDIN, M.; ARSLAN, E.; YIGIDER, E.; TASPINAR, M. S.; AGAR, G. Protection of Phaseolus vulgaris L. from herbicide 2,4-D results from exposing seeds to humic acid. Arabian Journal for Science and Engineering, v. 46, n. 1, p. 163-173, 2020. https://doi.org/10.1007/s13369-020-04893-w.
BALBINOT JUNIOR, A. A. Acamamento de plantas na cultura da soja. Revista Agropecuária Catarinense, v. 25, n. 1, p.40-41, 2012. Disponível em: <https://publicacoes.epagri.sc.gov.br/rac/article/view/632/534>. Acesso em: 5 nov. 2024.
BARTLETT, M. S. Properties of sufficiency and statistical tests. Proceedings of the Royal Society A, v. 160, n. 901, p. 268-282, 1937. https://doi.org/10.1098/rspa.1937.0109.
BEGOVIĆ, L.; JURIŁIĆ, N.; GAJDOŁIK, M. Š.; MIKUŁKA, A.; MLINARIĆ, S. Photosynthetic efficiency and antioxidative response of soybean exposed to selective herbicides: a field study. Agriculture, v. 13, n. 7, p. 1385, 2023. https://doi. org/10.3390/agriculture13071385.
CASTRO, D. G.; GONÇALVES, A. H.; ZUFFO, A. M.; ZAMBIAZZI, E. V.; REZENDE, P. M. de; BRUZI, Adriano T.; GODINHO, S. H. M. Desempenho agronômico da soja RR® em função de doses de glifosato. Revista de Ciências Agrárias, v. 4, n. 42, p. 942-950, 2018. https://doi.org/10.19084/rca.18402.
COMPANHIA NACIONAL DE ABASTECIMENTO - Conab. Acompanhamento da Safra Brasileira de Grãos: safra 2022/23. 6° levantamento. Brasília, DF, v. 10, n. 6, 14 p., 2023. Disponível em: <https://www.conab.gov.br/info-agro/safras/graos/boletim-da-safra-de-graos>. Acesso em: 10 set. 2024.
DILAWARI, R.; KAUR, N.; PRIYADARSHI, N.; PRAKASH, I.; PATRA, A.; MEHTA, S.; SINGH, B.; JAIN, P.; ISLAM, M. D. A. Soybean: a key player for global food security. In: WANI, S. H.; SOFI, N. U. R.; BHAT, M. A.; LIN, F. (Eds.) Soybean Improvement. Springer, 2022. p. 1-46. https://doi.org/10.1007/978-3-031-12232-3_1.
DURBIN, J.; WATSON G. S. Testing for serial correlation in least squares regression I. Biometrika, v. 37, n. 3/4, p. 409-428, 1950.
EINHARDT, A. M.; OLIVEIRA, L. M.; FERREIRA, S.; ARAUJO, W. L.; MEDEIROS, D. B.; FERNIE, A. R.; RODRIGUES, F. A. Defense responses and oxidative metabolism of glyphosate-resistant soybean plants infected by Phakopsora pachyrhizi modulated by glyphosate and nickel. Physiological And Molecular Plant Pathology, v. 118, p. 101817, 2022. https://doi.org/10.1016/j.pmpp.2022.101817.
EUROPEAN WEED RESEARCH COUNCIL (EWRC). Report of 3rd and 4rd meetings of EWRC. Committee of methods in weed research. Weed Research, v. 4, n. 1, p. 88, 1964.
FADIN, D. A.; TORNISIELO, V. L.; BARROSO, A. A. M.; RAMOS, S.; REIS, F. C. dos; MONQUERO, P. A. Absorption and translocation of glyphosate in Spermacoce verticillata and alternative herbicide control. Weed Research, v. 58, n. 5, p. 389-396, 2018. https://doi.org/10.1111/wre.12329.
FRANS, R.W. Measuring plant response. In: WILKINSON, R.E. Research methods in weed science. Australia: Southern Weed Science Society, 1972. p.28-41.
FRENE, R. L.; SIMPSON, D.M.; BUCHANAN, M.B.; VEGA, E.T.; RAVOTTI, M.E.; VALVERDE. Enlist E3™ soybean sensitivity and Enlist™ herbicide-based program control Sumatran Fleabane (Conyza Sumatrensis). Weed technology, v. 32, n. 4, p. 416-423, 2018. https://doi.org/10.1017/wet.2018.29.
GAZZIERO, D. L. P.; SILVA, A. F. da; SILVEIRA, O. R. da; DUKE, S. O.; CERDEIRA, A. L. Introduction and management of Amaranthus palmeri in Brazil. Advances in Weed Science, v. 41, p. 1-10, 2023. https://doi.org/10.51694/advweedsci/2023;41:00010.
GRIFFIN, S. L.; GODBEY, J. A.; OMAN, T. J.; EMBREY, S. K.; KARNOUP, A.; KUPPANNAN, K.; BARNETT, B. W.; LIN, G.; HARPHAM, N. V. J.; JUBA, A. N.; SCHAFER, B. W.; CICCHILLO, R. M. Characterization of aryloxyalkanoate dioxygenase-12, a nonheme fe(ii)/α-ketoglutarate-dependent dioxygenase, expressed in transgenic soybean and pseudomonas fluorescens. Journal of Agricultural and Food Chemistry, v. 61, n. 27, p. 6589-6596, 2013. http://dx.doi.org/10.1021/jf4003076.
GUPTA, H.; PURUSHOTTAM; YADAV, G.; YADAV, S. K.; SINGH, S.; KUMAR, S. Genetic variability, heritability and genetic advance for yield and its related traits in rainfed upland rice (Oryza sativa L.) genotypes. The Pharma Innovation Journal, v. 11, n. 2, p. 2520-2524, 2022.
JARDINE, J. G. Soja. Brasília: Empresa Brasileira de Pesquisa Agropecuária, 2021. Disponível em: <https://www.embrapa.br/agencia-de-informacao-tecnologica/tematicas/agroenergia/biodiesel/materias-primas/soja>. Acesso em: 10 set. 2024.
KALSING, A.; LUCIO, F. R.; ROSSI, C. V. S.; RAMPAZZO, P. E.; GONGALVES, F. P.; VALERIANO, R. Tolerance of DAS-44466-6 and DAS-44466-6 x DAS-81419-2 soybeans to 2,4-D and glyphosate in the Cerrado region of Brazil. Planta Daninha, v. 36, n. 1, p. e018174410, 2018. https://doi.org/10.1590/S0100-83582018360100073.
KESAWAT, M. S.; SATHEESH, N.; KHERAWAT, B. S.; KUMAR, A.; KIM, H. U.; CHUNG, S. M.; KUMAR, M. Regulation of reactive oxygen species during salt stress in plants and their crosstalk with other signaling molecules - current perspectives and future directions. Plants, v. 12, n. 4, e 864, 2023. https://doi.org/10.3390/plants12040864.
KLEIN, H. S.; LUNA, F. V. The growth of the soybean frontier in south America: the case of Brazil and Argentina. Revista de Historia Economica / Journal of Iberian and Latin American Economic History, v. 39, n. 3, p. 427-468, 2020. https://doi.org/10.1017/s0212610920000269.
LEI, Q.; ZHOU, J.; ZHANG, W.; LUO, J.; WU, K.; LONG, C. Morphological diversity of panicle traits in Kam fragrant glutinous rice (Oryza sativa). Genetic Resources and Crop Evolution, v. 65, n. 3, p. 775-786, 2017. https://doi.org/10.1007/s10722-017-0570-9.
MILLER, M. R.; NORSWORTHY, J. K. Evaluation of herbicide programs for use in a 2,4- D-resistant soybean technology for control of glyphosate-resistant Palmer Amaranth (Amaranthus palmeri). Weed Technology, v. 30, n.2, p. 366-376, 2016. https://doi.org/10.1614/wt-d-15-00129.1.
MONTEIRO, A.; SANTOS, S. Sustainable approach to weed management: the role of precision weed management. Agronomy, v. 12, n. 1, p. 118, 2022. https://doi.org/10.3390/agronomy12010118.
MONTEIRO, M. S.; SILVA, P. V. da; MEDEIROS, E. S. de; SCHEDENFFELDT, B. F.; MAUAD, M.; SALMAZO, P. A. V.; SILVA, G. P. da; FRANCESCHETT, M. B.; MONQUERO, P. A.; DIAS, R. de C.; BICALHO, C. C. Conyza spp. control and selectivity of 2,4-D in ENLIST® soybean. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 29, n. 1, e280636, 2024. https://doi.org/10.1590/1807-1929/agriambi.v29n1e280636.
NISHIOKA, H.; OKUMURA, T. Influence of sowing time and nitrogen topdressing at the flowering stage on the yield and pod character of green soybean (Glycine max (L.) Merrill). Plant Production Science, v. 11, n. 4, p. 507-513, 2008. https://doi.org/10.1626/pps.11.507.
PAPINENI, S.; MURRAY, J. A.; RICARDO, E.; DUNVILLE, C. M.; SURA, R. K.; THOMAS, J. Evaluation of the safety of a genetically modified DAS-444Ø6-6 soybean meal and hulls in a 90-day dietary toxicity study in rats. Food And Chemical Toxicology, v. 109, p. 245-252, 2017. https://doi.org/10.1016/j.fct.2017.08.048.
PETERSON, M. A.; MCMASTER, S. A.; RIECHERS, D. E.; SKELTON, J.; STAHLMAN, P. W. 2,4-D past, present, and future: a review. Weed Technology, v. 30, n. 2, p. 303-345, 2016. https://doi.org/10.1614/wt-d-15-00131.1.
PIMENTEL-GOMES, P. F. Reimpressão curso de estatística experimental. 15. ed. Piracicaba: Fealq, 2022. 451 p. (ISBN: 9788571330559).
R CORE TEAM. R: a language and environment for statistical computing (4.3.3). R Foundation for Statistical Computing, Vienna, Austria [software]. 2024.
REZENDE, P. M. de; CARVALHO, E. de A. Avaliação de cultivares de soja [Glycine max (L.) Merrill] para o sul de Minas Gerais. Ciência e Agrotecnologia, v. 31, n. 6, p. 1616-1623, 2007. https://doi.org/10.1590/S1413-70542007000600003.
SCOTT, A. J.; KNOTT, M. A cluster analysis method for grouping means in the analysis of variance. Biometrics, v.30, n.3, p.507-512, 1974.
SHAPIRO, S. S.; WILK, M. B. An analysis of variance test for normality (complete sample). Biometrika, v.52, n.3, p.591-611, 1965.
SHIMIZU, G. D.; MARUBAYASHI, R. Y. P.; GONCALVES, L. S. A. AgroR: experimental statistics and graphics for agricultural sciences. R package version 1.3.5. 2023 Disponível em: <https://CRAN.R-project.org/package=AgroR>. Acesso em: 26 jul. 2024.
SONG, Y. Insight into the mode of action of 2,4‐dichlorophenoxyacetic acid (2,4‐D) as an herbicide. Journal of Integrative Plant Biology, v. 56, n. 2, p. 106-113, 2014. https://doi.org/10.1111/jipb.12131.
STERLING, T. M.; HALL, J. C. Mechanism of action of natural auxins and the auxinic herbicides. Reviews in Toxicology, v.1, p. 111–142, 1997. Disponível em: <https://www.researchgate.net/profile/Tracy-Sterling/publication/281414392_Mechanism_of_action_of_natural_aux ins_and_the_auxinic_herbicides/links/5a5b65980f7e9b5fb38ca18f/Mec hanism-of-action-of-natural-auxins-and-the-auxinic-herbicides.pdf>. Acesso em: 22 nov. 2024
THOMAS, A. L.; COSTA, J. A. Soja: manejo para altas produtividades de grãos; desenvolvimento da planta de soja e o potencial do rendimento de grãos. Porto Alegre: Evangraf, 2010. Disponível em: <https://lume.ufrgs.br/bitstream/handle/10183/255760/000737269.pdf?sequence=1&isAllowed=y>. Acesso em: 10 set. 2024.
TORRA, J.; LACRUZ, R. A. D.; FIGUEIREDO, M. R. A. D.; GAINES, T. A.; JUGULAM, M.; MEROTTO, A.; PALMA‐BAUTISTA, C.; ROJANO‐DELGADO, A. M.; RIECHERS, D. E. Metabolism of 2,4‐D in plants: comparative analysis of metabolic detoxification pathways in tolerant crops and resistant weeds. Pest Management Science, v. 80, n. 12, p. 6041-6052, 2024. http://dx.doi.org/10.1002/ps.8373.
WANG, L.; CONTEH, B.; FANG, L.; XIA, Q.; NIAN, H. QTL mapping for soybean (Glycine max L.) leaf chlorophyll-content traits in a genotyped RIL population by using RAD-seq based high-density linkage map. BMC Genomics, v. 21, e 739, 2020. https://doi.org/10.1186/s12864-020-07150-4.
YU, K.; WANG, J.; SUN, C.; LIU, X.; XU, H.; YANG, Y.; DONG, L.; ZHANG, D. High-density QTL mapping of leaf-related traits and chlorophyll content in three soybean RIL populations. BMC Plant Biology, v. 20, e 470, 2020. https://doi.org/10.1186/s12870-020-02684-x.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Ygor de Cassio Garcia Ferreira, Gabriel Araújo Junqueira Ferraz, José Luiz de Andrade Rezende Pereira, Marcelo Araújo Junqueira Ferraz, Dionatas Alex Garcia, Arsenio Daniel Ivo Mulhanga

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright Notice
All of the Revista Agrogeoambiental’s articles and reviews are free to access immediately after its publication.
When submitting a paper to Revista Agrogeoambiental, the authors accept the following copyright policies:
- Authors maintain the copyrights and grant the journal the right of first publication. The paper is licensed under the Creative Commons Attribution License, which allows the sharing of the work as long as it acknowledges the author and the initial publication in this journal.
- Authors are free and encouraged to store their work elsewhere, for instance in institutional repositories or websites such as academia.edu to increase circulation.
- Authors assume their authorship and are responsible for the originality and opinions in their papers.
- After the article acceptance and publishing by Revista Agrogeoambiental, the authors allow the editor to publicize the work in other medias.
- Moral rights are granted to the authors.