Use of drone with digital photographic machine embedded for determination of leaf cover
DOI:
https://doi.org/10.18406/2316-1817v11n120191188Palabras clave:
Refletance. Digital image. Maize. NDVI.Resumen
The normalized difference vegetation index (NDVI) obtained via radiometer is important to determine the physiological state of plant, being a promising tool for decision making as to the best time for the application of agricultural pesticides, to analyze the threshold of economic damage. The use of drones with digital camera embedded in agriculture is in broad expansion. Through digital images analyzed in computer programs and correlated with NDVI it is possible to determine the leafcover in plants. The aim of this study was to confirm the use of digital images at 30 m in height to determine the leaf cover, correlating them with NDVI values obtained on the ground. Therefore, 30 m height photos were taken with the help of a drone and three stages of maize development (N4, N8 and R1), which were considered as treatments; afterwards, the images were analyzed in software to survey the leaf cover. The NDVI data were obtained in the same areas at a height of 0.5 m from the crop canopy, and it were submitted to the Scott Knott Test at 5 % significance and Pearson correlation. There was no statistical difference between methods and the Pearson correlation coefficient value (0,952) confirms strong evidence for correlation between the two methods. Thus, it can be concluded that the use of drone with embedded digital camera has promising use for the determination of leaf cover in maize.
Citas
ADAMI, M.; HASTENREITER, F. A.; FLUMIGNAN, D. L.; FARIA, R. T. de. Estimativa de área de folíolos de soja usando imagens digitais e dimensões foliares. Bragantia, Campinas, vol. 67, n. 4, p. 1053-1058, Out., 2008.
ALI, A. M.; THIND, H. S.; SHARMA, S.; SINGH, V. Prediction of dry direct-seeded rice yields using chlorophyll meter, leaf color chart and GreenSeeker optical sensor in northwestern India. Field Crops Research, v. 161, p. 11-15, 2014.
BACKES, C.; VILLAS BÔAS, R. L.; LIMA, C. P. de; GODOY, L. J. G. de; BÜLL, L. T.; SANTOS, A. J. M. Estado nutricional em nitrogênio da grama esmeralda avaliado por meio do teor foliar, clorofilômetro e imagem digital, em área adubada com lodo de esgoto. Bragantia, Campinas, vol. 69, n. 3, p. 661-668, 2010.
BARBEDO, J. G. A. Digital image processing tecnhiques for detecting, qualifying and classifying plant disease, SpringerPlus, Heidelberg, v. 2, p. 660-672, Dez., 2013.
BREDEMEIER, C.; VARIANI, C.; ALMEIDA, D.; ROSA, A. T. Estimativa do potencial produtivo em trigo utilizando sensor óptico ativo para adubação nitrogenada em taxa variável. Ciência Rural, Santa Maria, v. 43, n. 7, p. 1147-1154, Jul. 2013.
BARTON, C. V. M. Advances in remote sensing of plant stess. Plant and Soil, v. 354, n. 1-2, p. 41-44, May., 2012.
CANTERI, M. G., ALTHAUS, R. A., VIRGENS FILHO, J. S., GIGLIOTE, E. A., GODOY, C. V. SASM-Agri: Sistema para Análise e separação de médias em experimentos agrícolas pelos métodos Scott-Knott, Tukey e Duncan. Revista Brasileira de Agrocomputação, v. 1, n. 2, p. 18-24. 2001
CAO, Q.; MIAO, Y.; FENG, G.; GAO, X.; LI, F.; LIU, B.; Y, S.; CHENG, S.; USTIN, S. L. KHOSLA, R. Active canopy sensing of winter wheat nitrogen status: An evaluation of two sensor systems. Computers and Electronics in Agriculture, v. 112, p.54-67, Mar., 2015.
CHANG D.; ZHANG, J.; ZHU, L.; GE, S.; LI, P.; LIU, G. Delineation of management zones using an active canopy sensor for tobacco field. Computers and Electronics in Agriculture, v. 109, pp. 172-178, Nov., 2014
FREEMAN, P. K.; FREELAND, R. S. Politics & technology: U.S. polices restricting unmanned aerial systems in agriculture. Food Policy, v. 49, n. 1, p. 302-311, Dez., 2014.
GODOY, L. J. G. de; YANAGIWARA, R. S.; VILLAS BÔAS, R. L.; BACKES, C.; LIMA, C. P. de. Análise da imagem digital para estimativa da área foliar em plantas de laranja "Pêra". Revista Brasileira de Fruticultura, Jaboticabal, vol. 29, n. 3, p. 420-424, Dez., 2007.
GONG, A.; WU, X.; QIU, Z.; HE, Y. A handhelp device for leaf area measurement. Computers and Electronics in Agriculture, v. 98, pp. 74-80, Out., 2013.
GROHS, D. S.; BREDEMEIER, C.; MUNDSTOCK, C. M; POLETTO, N. Modelo para estimativa do potencial produtivo em trigo e cevada por meio do sensor GreenSeeker. Engenharia Agrícola Jaboticabal, vol.29, n.1 p. 101-112. Mar., 2009.
GUTIERREZ-SOTO, M. V; CADET-PIEDRA, E.; RODRIGUEZ-MONTERO, W.; ARAYA-ALFARO, J. M. El GreenSeeker™ y el diagnóstico del estado de salud de los cultivos. Agronomía Mesoamericana, San Pedro, v. 22, n. 2, p. 397-403, 2011.
HIKISHIMA, M., CANTERI, M. G., GODOY, C. V., KOGA, L. J., SILVA, A. J. Quantificação de danos e relações entre severidade, medidas de refletância e produtividade no patossistema ferrugem asiática da soja. Tropical Plant Pathology, Brasília, v. 35, n. 2, p. 96 – 103, Mar., 2010.
JORGE, L. A. de C., INAMASU, R. Y., CARMO, R. B. de. Desenvolvimento de um VANT totalmente configurado para aplicações em Agricultura de Precisão no Brasil. In: Simpósio Brasileiro de Sensoriamento Remoto, 15., Curitiba. Anais. 2011.
MALENOVSKÝ, Z.; MISHRA, K. B.; ZEMEK, F.; RASCHER, U.; NEDBAL, L. Scientific and technical challenges in remote sensing of plant canopy reflectance and fluorescence. Journal of Experimental Botany, Oxford, v. 60, n. 11, p. 2987-3004, Mai., 2009.
MICHELS, R. N. Utilização do índice de vegetação por diferença normalizada e de imagens digitais no estudo de doenças de plantas.. 2014. 68 f. Tese (Doutorado em Agronomia) – Centro de Ciências Agrárias, Universidade Estadual de Londrina, Londrina, 2014.
NILSON, H. E. Remote sensing and image analysis in plant pathology. Annual Review of Phytopathology, Palo Alto, v. 33, p. 489-528, Set., 1995.
SILVA JÚNIOR, M. C. da; PINTO, F. de A. de C.; FONSECA, D. M. da; QUEIROZ, D. M. de; MACIEL, B. F. Detecção do efeito da adubação nitrogenada em Brachiaria decumbens Stapf utilizando um sistema de sensoriamento remoto. Revista Brasileira de Zootecnia, Brasília, v. 37, n. 3, p. 411-419, Mar., 2008.
Publicado
Cómo citar
Número
Sección
Licencia
La Revista Agrogeoambiental es un periódico científico de acceso abierto y gratuito.
La sumisión de artículos y demás obras de comunicación científica para la Revista Agrogeoambiental implica plena aceptación por el autor y los coautores de la política de derechos de autor abajo:
● Autor y coautores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licença Creative Commons Attribution, que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
● Autor y coautores tienen permitido y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) después de su aceptación y publicación por la Revista Agrogeoambiental - manteniendo el reconocimiento de autoría y publicación inicial en esta revista.
● Autor y coautores declaran que la obra es de autoría de ellos y se responsabilizan por su originalidad y por las opiniones contenidas en ella.
● Una vez aceptado y publicado el artículo, autor y co-autores autorizan a la editorial a publicar en los medios y métodos para la elección del editor.
● El autor y coautores consagran los derechos de autor moral de la obra publicada.