Management and edaphoclimatic factors that determine soybean top-performing farmers in Brazil
DOI:
https://doi.org/10.18406/2316-1817v17nunico20251956Palabras clave:
Soybean yield. Crop management. Cultivar maturity. Sowing date.Resumen
The integration of meteorological, edaphic, and genetic data with robust analyses such as machine learning and factorial regression helps clarify the factors related to high soybean productivity. This study was developed in order to identify the key management and edaphoclimatic factors determining Brazil’s top-performing soybean farmers. Data were collected from the Brazilian Soy Strategic Committee (CESB) website, covering 50 farmers from 36 environments between 2014 and 2023. A total of 18 top-performing cultivars were identified, with relative maturity groups ranging from 5.4 to 8.3. Grain yield was analyzed using centered means with partial least squares, followed by linear regression models and t-tests (p < 0.05). Reaction norm parameters were estimated via the Finlay-Wilkinson method, stratified by production region. Factorial regression included meteorological, geographic, satellite, and soil variables as predictors. A regression tree algorithm identified the most influential variables, and farmer profiles were grouped using principal component biplots and K-means clustering. Machine learning models proved superior to traditional methods for predicting productivity, offering a strategic tool for agribusiness. Key factors positively associated with yield included mean temperature (around 30°C), relative humidity, longwave and shortwave radiation, high altitude, early sowing, high plant population, elevated soil organic matter, and high cation exchange capacity. Interestingly, yields were higher in soils with magnesium and calcium contents below 13% and 27%, respectively, decreasing beyond those levels. The highest yields (>6 t ha-1) were observed in Rio Grande do Sul, Paraná, São Paulo, and Minas Gerais. Future research should validate these models in low-tech environments and include socio-economic variables.
Citas
BATTISTI, R.; SENTELHAS, P. C.; PASCOALINO, J. A. L.; SAKO, H.; DANTAS, J. P. S.; MORAES, M. F. Soybean yield gap in the areas of yield contest in Brazil. International Journal of Plant Production, v. 12, p. 159-168, 2018.
CERVIEIRI FILHO, E.; MENEGHELLO, G. E.; VILLELA, F. A.; CARVALHO, I. R.; LAUTENCHLEGER, F.; MOURA, N. B. Soybean performance and canonic inter-relations towards spacing between sowing lines. Brazillian Journal of Agriculture, v. 96, n. 1, p. 314-323, 2021.
CESB. Oficial rules. 2024. Available in: https://www.cesbrasil.org.br/desafio-soja/regulamento/. Access on: Apr. 30th, 2025.
COMPANHIA NACIONAL DE ABASTECIMENTO (CONAB). Grain bulletin – April, 2024. Available in: https://www.conab.gov.br/info-agro/safras/graos. Access on: May 22th, 2024.
CORBELLINI, M.; BOBEK, D. V.; TOLEDO, J. F. F.; FERREIRA, L. U.; SANTANA, D. C.; GILIO, T. A. S.; TEODORO, L. P. R.; TEODOR, P. E.; TARDIN, F. D. Geographical adaptability for optimizing the recommendation of soybean cultivars in the Brazilian Cerrado. Scientific Reports, v. 14, n. 13076, p. 1-12, 2024.
DA SILVA, V. T.; GAVA, R.; COTRIM, M. F.; WASSOLOWSKI, C. R.; TEODORO, P. E.; SNYDER, R. L. Irrigation management in soybean cultivation in direct seeding system, on cultural remains of Brachiaria ruziziensis. Research, Society and Development, v. 9, n. 6, e64963430, 2020.
DE MELLO, E. S.; BRUM, A. L. The soybean production chain and some impacts on the regional development of Rio Grande do Sul. Brazilian Journal of Development, v. 6, n. 10, p. 74734-74750, 2020.
EDREIRA, J. I. R.; MOURTZINIS, S.; CONLEY, S. P.; ROTH, A. C.; CIAMPITTI, I. A.; LICHT, M. A.; KANDEL, H.; KYVERYGA, P. M.; LINDSEY, L. E.; MUELLER, D. S.; NAEVE, S. L.; NAFZIGER, E.; SPECHT, J. E.; STANLEY, J.; STATON, M. J.; GASSINI, P. Assessing causes of yield gaps in agricultural areas with diversity in climate and soils. Agricultural and Forest Meteorology, v. 247, p. 170–180, 2017.
FONTANA, D. C.; DALMAGO, G. A.; SCHIRMBECK, J.; SCHIRMBECK, L. W.; FERNANDES, J. M. C. Modificações na quantidade e qualidade da radiação solar ao atravessar a atmosfera e interagir com plantas de soja. Agrometeors, v.27, n.1, p. 101-110, 2020.
FRIGERI, A. R.; LAZARINI, E.; ORIOLI JÚNIOR, V.; BERNARDES, J. V. S. Sowing times and plant population for three soybean cultivars. Acta Iguazu, v. 8, n. 4, p. 41-52, 2019.
GLOBAL GRIDDED SOIL INFORMATION (SOILGRIDS). Available in: https://soilgrids.org/. Access on: May 28th, 2024.
GOMES, M. R. Evolution and perspectives of economic performance and soy production in the Brazilian and Paraná contexts. Journal (Re) Definitions of Borders, v. 1, n. 2, p. 349-360, 2023.
GONÇALVES, S. L.; OLIVEIRA, M. C. N.; FARIAS, J. R. B.; SIBALDELLI, R. N. R. Mathematical equations representing the impacts of climatic factors on soybean productivity in the 2018/2019 crop season in the Parana State, Brazil. Agrometeoros, v. 28, n. 026748, p. 1-10, 2020.
KANDEL, G. P.; BAVOROVA, M.; ULLAH, A.; PRADHAN, P. Food security and sustainability trough adaptation to climate change: lessons learned from Nepal. International Journal of Disaster Risk Reduction, v. 101, e104279, 2024.
LOBELL, D. B.; CASSMAN, K. G.; FIELD, C. B. Crop yield gaps: their importance, magnitudes, and causes. Annual Review of Environment and Resources, v. 34, p. 179–204, 2009.
LORO, M. V.; CARVALHO, I. R.; SILVA, J. A. G.; SFALCIN, I. C.; PRADEBON, L. C. Decomposition of white oat phenotypic variability by environmental covariates. Brazilian Journal of Agriculture, v. 97, n. 3, p. 279-302, 2022.
MALAVOLTA, E.; VITTI, G. C.; OLIVEIRA, S. A. Avaliação do estado nutricional das plantas: princípios e aplicações. 2 ed. Piracicaba: POTAFOS, 1997. 319p.
MARENCO, R. A.; ANTEZANA-VERA, S. A. Stem growth of multipurpose tree species: net effect of micrometeorological variability assessed by principal component regression. Acta Amazonica, v. 51, n. 3, p. 213-222, 2021.
MOURTZINIS, S.; GASPAR, A. P.; NAEVE, S. L.; CONLEY, S. P. Planting date, maturity, and temperature effects on soybean seed yield and composition. Agronomy Journal, v. 109, n. 5, p. 2040-2049, 2017.
National aeronautics and space administration-prediction of worldwide energy resources (NASA POWER). Available in: https://power.larc.nasa.gov/. Access on: May 28th, 2024.
NEUMAIER, N.; FARIAS, J. R. B.; NEPOMUCENO, A. L.; MERTZ-HENNING, L. M.; FOLONI, J. S. S.; MORAES, L. A. C.; GONÇALVES, S. L. Ecofisiologia da soja. In: SEIXAS, C. S.; NEUMAIER, N.; BALBINOT JUNIOR, A. A.; KRYZANOWSKI, F. C.; LEITE, R. M. V. B. C. Tecnologias de produção de soja. Londrina: Embrapa Soja, 2020. p. 33-54.
OLIVOTO, T.; CARVALHO, I. R.; NARDINO, M.; FERRARI, M.; DE PELEGRIN, A. J.; SZARESKI, V. J.; DE SOUZA, V. Q. Morphological characters and grain yield of simple corn hybrids in different environments in different environments. Journal of Agroveterinary Sciences, v.17, n.4, p.462-471, 2018.
PRADEBON, L. C., CARVALHO, I. R., LORO, M. V., PORT, E. D., BONFADA, B., SFALCIN, I. C., e CHALLIOL, M. A. Soybean adaptability and stability analyzes to the organic system through AMMI, GGE Biplot and mixed models methodologies. Ciência Rural, v.53, e20220262, 2023a.
PRADEBON, L. C.; CARVALHO, I. R.; SANGIOVO, J. P.; LORO, M. V.; SCARTON, V. D. B.; PORT, E. D.; MALLMANN, G.; STASIAK, G.; MACIEL, D. G.; LOPES, P. F.; CARIOLI, G. Management tendencies and needs: a joint proposal to maximize soybean grain yield. Agronomy Science and Biotechnology, v. 9, p. 1-11, 2023b.
R CORE TEAM. R: A language and environment for statistical computing. R Foundation for Statistical Computing, 2024. Available in: https://www.Rproject.org. Access on: May 28th, 2024.
RAMOS, F. T.; DORES, E. F. G. C.; WEBER, O. L. S.; BEBER, D. C.; CAMPELO JÚNIOR, J. H.; MAIA, J. C. S. Soil organic matter doubles the cation exchange capacity of tropical soil under no-till farming in Brazil. Journal of the Science of Food and Agriculture, v. 98, n. 9, p. 3595-3602, 2018.
RESENDE, R. T.; PIEPHO, H. P.; ROSA, G. J. M.; SILVA JUNIOR, O. B.; SILVA, F. F.; RESENDE, M. V. D.; GATTAPAGLIA, D. Enviromics in breeding: applications and perspectives on envirotypic-assisted selection. Theoretical and Applied Genetics, v. 134, p. 95–112, 2021.
SCARTON, V. D. B.; CARVALHO, I. R.; PRADEBON, L. C.; LORO, M. V.; ALBAN, A. A.; CHALLIOL, M. A.; SAUSEN, N. H.; BRAGA, P. M. F.; SFALCIN, I. C. Influence of meteorological variables and geographic factors in the selection of soybean lines. Revista de Agricultura Neotropical, v. 10, n. 3, e7246, 2023.
SENTELHAS, P. C.; BATTISTI, R.; CÂMARA, G. M. S.; FARIAS, J. R. B.; HAMPF, A.; NENDEL, C. The soybean yield gap in Brazil-magnitude, causes and possible solutions for a sustainable production. Journal of Agricultural Science, v. 153, n. 8, p. 1394–1411. 2015.
SILVA, C. A.; CERRI, C. E. P.; DE ANDRADE, C. A.; MARTIN NETO, L.; BETTIOL, W. Matéria orgânica do solo: ciclo, compartimentos e funções. In: BETTIOL, W.; SILVA, C. A.; CERRI, C. E. P.; MARTIN-NETO, L.; ANDRADE, C. A. Entendendo a matéria orgânica do solo em ambientes tropical e subtropical. Brasília, DF: Embrapa, 2023, p. 17-48.
STRALIOTTO, R.; PRADO, R. B.; FERRAZ, R. P. D.; SIMÕES, M. G.; FONTANA, A.; DENARDIN, J. E.; GIONGO, V.; AMARAL, A. J. do; BIANCHI, S. R.; BEDENDO, G. C. Intensificação da agricultura com sustentabilidade. In: TORRES, L. A.; CAMPOS, S. K. Megatendências da Ciência do Solo 2030. Brasília, DF: Embrapa, 2022, p. 97-117.
VAN ITTERSUM, M. K.; CASSMAN, K. G.; GRASSINI, P.; WOLF, J.; TITTONELL, P.; HOCHMAN, Z. Yield gap analysis with local to global relevance - A review. Field Crops Research, v. 143, p. 4–17. 2013.
WINCK, J. E. M.; TAGLIAPIETRA, E. L.; SCHNEIDER, R. A.; INKLMAN, V. B.; DALLA NORA, M.; SAVEGNAGO, C., PAULA, L. S.; SILVA, M.R.; ZANON, A.J.; STRECK, N. A. Decomposition of the soybean yield gap into environment × genetics × management in southern Brazil. European Journal of Agronomy, v. 145, n. 126795, p. 1-10, 2023.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Victor Delino Barasuol Scarton, Ivan Ricardo Carvalho, Christiane de Fátima Colet, Leonardo Cesar Pradebon, Willyan Júnior Adorian Bandeira, Jaqueline Piesanti Sangiovo, Murilo Vieira Loro, José Antonio Gonzalez da Silva

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
La Revista Agrogeoambiental es un periódico científico de acceso abierto y gratuito.
La sumisión de artículos y demás obras de comunicación científica para la Revista Agrogeoambiental implica plena aceptación por el autor y los coautores de la política de derechos de autor abajo:
● Autor y coautores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licença Creative Commons Attribution, que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
● Autor y coautores tienen permitido y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) después de su aceptación y publicación por la Revista Agrogeoambiental - manteniendo el reconocimiento de autoría y publicación inicial en esta revista.
● Autor y coautores declaran que la obra es de autoría de ellos y se responsabilizan por su originalidad y por las opiniones contenidas en ella.
● Una vez aceptado y publicado el artículo, autor y co-autores autorizan a la editorial a publicar en los medios y métodos para la elección del editor.
● El autor y coautores consagran los derechos de autor moral de la obra publicada.