Automatic detection of wildfire burn scars and estimation of greenhouse gas emissions in the Chapada dos Guimarães environmental protection area using satellite images
DOI:
https://doi.org/10.18406/2316-1817v17nunico20252017Palavras-chave:
Remote sensing. Fire detection. Greenhouse gases.Resumo
Wildfires are recurrent in the Chapada dos Guimarães environmental protection area, Mato Grosso, Brazil. Besides the fact that these fires significantly affect biogeochemical cycles, another cause for concern is the release of greenhouse gases such as CO2, CH4 and N2O from biomass burning. Thus, this study was developed to create a computer system for detecting wildfire burn scars and measuring the volume of gases released automatically. Construction was based on the calculation of spectral indices from Sentinel-2 images, with a spatial resolution of 10 meters and a five-day time resolution. The system downloads data every five days, generates a thematic map showing burned areas and a report in CSV format with area size and an estimate of emitted gases. It is currently operational and constantly monitors the appearance of new points of origin in the study area. Validation to date is qualitative, but a quantitative approach is underway.
Referências
ALCARAS, E; COSTANTINO, D.; GUASTAFERRO, F.; PARENTE, C.; PEP, M. Normalized Burn Ratio Plus (NBR+): a new index for Sentinel-2 imagery. Remote Sensing, v. 14, n. 7, art. 1727, 2022.
ALVARADO, S. T.; FORNAZARI, T.; COSTOLA, A.; MORELLATO, L. P. C.; SILVA, T. S. Drivers of fire occurrence in a mountainous Brazilian cerrado savanna: tracking long-term fire regimes using remote sensing. Ecological Indicators, v. 78, p. 270–281, 2017.
ARGIBAY, D. S.; SPARACINO, J.; ESPINDOLA, G. M. A long-term assessment of fire regimes in a Brazilian ecotone between seasonally dry tropical forests and savannah. Ecological Indicators, v. 113, art. 106151, 2020.
ARRUDA, V. L. S.; PIONTEKOWSKI, V. J.; ALENCAR, A.; PEREIRA, R. S.; MATRICARDI, E. A. T. An alternative approach for mapping burn scars using Landsat imagery, Google Earth Engine, and Deep Learning in the Brazilian Savanna. Remote Sensing Applications Society and Environment, v. 22, art. 100472, 2021.
ARRUDA, W. DE S.; OLDELAND, J.; FILHO, A. C. P.; CUNHA, N. L.; ISHII, I. H.; DAMASCENO-JUNIOR, G. A. Inundation and fire shape the structure of riparian forests in the Pantanal, Brazil. PloS one, v. 11, n. 6, e0156825, 2016.
BARBOSA, R. I.; FEARNSIDE, P. M. Fire frequency and area burned in the Roraima savannas of Brazilian Amazonia. Forest Ecology and Management, v. 204, n. 2–3, p. 371–384, 2005a.
BARBOSA, R. I.; FEARNSIDE, P. M. Above-ground biomass and the fate of carbon after burning in the savannas of Roraima, Brazilian Amazonia. Forest Ecology and Management, v. 216, n. 1–3, p. 295–316, 2005b.
BASTARRIKA, A.; CHUVIECO, E.; MARTÍN, M. P. Mapping burned areas from Landsat TM/ETM+ data with a two-phase algorithm: balancing omission and commission errors. Remote Sensing of Environment, v. 115, n. 4, p. 1003–1012, 2011.
BOSCHETTI, L.; ROY, D. P.; JUSTICE, C. O.; HUMBER, M. L. MODIS–Landsat fusion for large area 30 m burned area mapping. Remote Sensing of Environment, v. 161, p. 27–42, 2015.
CABRAL, A. I. R.; SAITO, C.; PEREIRA, H.; LAQUES, A. E. Deforestation pattern dynamics in protected areas of the Brazilian Legal Amazon using remote sensing data. Applied Geography, v. 100, p. 101–115, 2018.
CHEN, Y.; MORTON, D. C.; RANDERSON, J. T. Remote sensing for wildfire monitoring: Insights into burned area, emissions, and fire dynamics. One Earth, v. 7, n. 6, p. 1022-1028, 2024.
CHUVIECO, E.; MOUILLOT, F.; WERF, G. R.; MIGUEL, J. S.; TANASE, M.; KOUTSIAS, N.; GARCÍA, M.; YEBRA, M.; PADILLA, M.; GITAS, I.; HEIL, A.; HAWBAKER, T. J.; GIGLIO, L. Historical background and current developments for mapping burned area from satellite Earth observation. Remote Sensing of Environment, v. 225, p. 45–64, 2019.
DÍAZ-VÁZQUEZ, D.; CASILLAS-GARCÍA, L. F.; GARCIA-GONZALEZ, A.; MONTERO, S. H. G.; RUBUI, J. I. M.; LLAMAS, J. J.; HERNANDEZ, M. S. G. Integrating remote sensing and machine learning for dynamic burn probability mapping in data-limited contexts. Remote Sensing Applications: Society and Environment, v. 38, art. 101554, 2025.
FEARNSIDE, P. M.; BARBOSA, R. I.; DE ALENCASTRO GRAÇA, P. M. L. Burning of secondary forest in Amazonia: biomass, burning efficiency and charcoal formation during land preparation for agriculture in Apiaú, Roraima, Brazil. Forest Ecology and Management, v. 242, n. 2–3, p. 678–687, 2007.
FEARNSIDE, P. M.; RIGHI, C. A.; GRAÇA, P. M. L. A.; KEIZER, E. W. H.; CERRI, C. C.; NOGUEIRA, E. M.; BARBOSA, R. I. Biomass and greenhouse-gas emissions from land-use change in Brazil’s Amazonian “arc of deforestation”: The states of Mato Grosso and Rondônia. Forest Ecology and Management, v. 258, n. 9, p. 1968–1978, 2009.
FIEDLER, N. C.; MERLO, D. A.; MEDEIROS, M. B. DE. Ocorrência de incêndios florestais no Parque Nacional da Chapada dos Veadeiros, Goiás. Ciência Florestal, v. 16, n. 2, p. 153–161, 2006.
FREITAS, W. K.; GOIS, G.; PEREIRA JR., E. R.; JUNIOR, J. F. O.; MAGALHÃES, L. M. S.; BRASIL, F. C.; SOBRAL, B. S. Influence of fire foci on forest cover in the Atlantic Forest in Rio de Janeiro, Brazil. Ecological Indicators, v. 115, art. 106340, 2020.
GALANTER, M.; LEVY, H., II; CARMICHAEL, G. R. Impacts of biomass burning on tropospheric CO, NO2, and O3. Journal of Geophysical Research, v. 105, n. D5, p. 6633–6653, 2000.
GENEROSO, S.; BEY, I.; ATTIÉ, J. K.; BRÉON, F. M. A satellite‐ and model‐based assessment of the 2003 Russian fires: impact on the Arctic region. Journal of Geophysical Research, v. 112, n. D15, p. 1-16, 2007.
HAO, W. M.; LARKIN, N. K. Wildland fire emissions, carbon, and climate: wildland fire detection and burned area in the United States. Forest Ecology and Management, v. 317, p. 20–25, 2014.
HASAN, H.; ZHANG, P.; CHEN, J.; SHI, G.; ABICHOU, T.; YU, H. Exploring uncertainties in the integrated mass enhancement method for remote sensing retrievals of methane emissions. Waste Management, v. 200, art. 114759, 2025.
HISLOP, S.; HAYWOOD, A.; JONES, S.; SOTO-BERELOV, M.; SKIDMORE, A. K.; NGUYEN, T. H. A satellite data driven approach to monitoring and reporting fire disturbance and recovery across boreal and temperate forests. International Journal of Applied Earth Observation and Geoinformation: ITC journal, v. 87, art. 102034, 2020.
ICMBIO. Plano de manejo do Parque Nacional da Chapada dos Guimarães. Ministério do Meio Ambiente. [s.l.] Instituto Chico Mendes de Conservação da Biodiversidade, 2009. Disponível em: < https://uc.socioambiental.org/arp/1142 >. Acesso em: 26 jun. 2025.
IPCC. 2019 Refinement to the 2006 IPCC guidelines for national greenhouse gas inventories. Suíça: IPCC, 2019. Disponível em: <https://www.ipcc.ch/report/2019-refinement-to-the-2006-ipcc-guidelines-for-national-greenhouse-gas-inventories/>. Acesso em: 26 jun. 2025.
KAUFMAN, Y. J.; SETZER, A.; WARD, D.; TANRE, D.; HOLBEN, B. N.; MENZEL, P.; PEREIRA, M. C.; RASMUSSEN, R. Biomass burning airborne and spaceborne experiment in the Amazonas (BASE‐A). Journal of Geophysical Research, v. 97, n. D13, p. 14581–14599, 1992.
LABONNE, M.; BRÉON, F.-M.; CHEVALLIER, F. Injection height of biomass burning aerosols as seen from a spaceborne lidar. Geophysical Research Letters, v. 34, n. 11, art. L11806, 2007.
LANGMANN, B.; DUNCAN, B.; TEXTOR, C.; TRENTMANN, J.; WERF, G. R. Vegetation fire emissions and their impact on air pollution and climate. Atmospheric Environment, v. 43, n. 1, p. 107–116, 2009.
LARIS, P. S. Spatiotemporal problems with detecting and mapping mosaic fire regimes with coarse-resolution satellite data in savanna environments. Remote Sensing of Environment, v. 99, n. 4, p. 412–424, 2005.
LI, H.; JIN, X.; ZHAO, R.; HAN, B.; ZHOU, Y.; TITTONELL, P. Assessing uncertainties and discrepancies in agricultural greenhouse gas emissions estimation in China: A comprehensive review. Environmental Impact Assessment Review, v. 106, art. 107498, 2024.
MACHADO, R. B.; NETO, M. R.; PEREIRA, P. G.; CALDAS, E. F.; GONÇALVES, D. A.; SANTOS, N.; TABOR, K.; STEININGER, M. Estimativas de perda da área do Cerrado brasileiro. Relatório técnico não publicado. Conservação Internacional, Brasília, DF, 2004. Disponível em: < https://jbb.ibict.br/bitstream/1/357/1/2004_%20Conservacao%20Interna cional_%20estimativa_desmatamento_cerrado.pdf>. Acesso em: 26 jun. 2025.
MAKINECI, H. B. Investigation of burned areas with multiplatform remote sensing data on the Rhodes 2023 forest fires. Ain Shams Engineering Journal, v. 15, n. 10, art. 102949, 2024.
MIRANDA, A. I.; COUTINHO, M.; BORREGO, C. Forest fire emissions in Portugal: a contribution to global warming? Environmental Pollution, v. 83, n. 1–2, p. 121–123, 1994.
MOLEMA, T. R.; TESFAMICHAEL, S. G.; FUNDISI, E. Optical and radar remote sensing for burn scar mapping in the grassland biome. Remote Sensing Applications: Society and Environment, v. 38, art. 101548, 2025.
MORADI, S.; GHASEMIFAR, E. Analysis of the gas emissions from volcanic activity in the East African Rift System using remote sensing over the past two decades. Remote Sensing Applications: Society and Environment, v. 37, art. 101471, 2025.
OLSON, J. R.; BAUM, B. A.; CAHOON, D. R.; CRAWFORD, J. H. Frequency and distribution of forest, savanna, and crop fires over tropical regions during PEM‐Tropics A. Journal of Geophysical Research, v. 104, n. D5, p. 5865–5876, 1999.
PEREIRA, A. A.; PEREIRA, J. A.; MORELLI, F.; BARROS, D. A.; ACERBI JR, F. W.; SCOLFORO, J. R. S. Validação de focos de calor utilizados no monitoramento orbital de queimadas por meio de imagens TM. CERNE, v. 18, n. 2, p. 335–343, 2012.
PLENIOU, M.; KOUTSIAS, N. Sensitivity of spectral reflectance values to different burn and vegetation ratios: a multi-scale approach applied in a fire affected area. ISPRS Journal of Photogrammetry and Remote Sensing: official publication of the International Society for Photogrammetry and Remote Sensing (ISPRS), v. 79, p. 199–210, 2013.
ROY, D. P.; GUHA, A.; KUMAR, K. V. An approach of surface coal fire detection from ASTER and Landsat-8 thermal data: Jharia coal field, India. International Journal of Applied Earth Observation and Geoinformation: ITC Journal, v. 39, p. 120–127, 2015.
ROY, D. P.; JIN, Y.; LEWIS, P. E.; JUSTICE, C. O. Prototyping a global algorithm for systematic fire-affected area mapping using MODIS time series data. Remote Sensing of Environment, v. 97, n. 2, p. 137–162, 2005.
SANO, S. M.; DE ALMEIDA, S. P.; RIBEIRO, J. F. Cerrado: ecologia e flora. Parque Estação Biológica - PqEB. Brasília, DF: Embrapa, 2008. 410 p.
SHIMABUKURO, Y. E.; DUTRA, A. C.; ARAI, E.; DUARTE, V.; CASSOL, H. K. G.; PEREIRA, G.; CARDOZO, F. S. Mapping burned areas of Mato Grosso State Brazilian Amazon using multisensor datasets. Remote Sensing, v. 12, n. 22, art. 3827, 2020.
SILVA, S. S.; FEARNSIDE, P. M.; GRAÇA, P. M. L. A.; BROWN, I. F.; ALENCAR, A.; MELO, A. W. F. Dynamics of forest fires in the southwestern Amazon. Forest Ecology and Management, v. 424, p. 312–322, 2018.
URBANSKI, S. Wildland fire emissions, carbon, and climate: emission factors. Forest Ecology and Management, v. 317, p. 51–60, 2014.
VASCONCELOS, S. S.; FEARNSIDE, P. M.; GRAÇA, P. M. L.; NOGUEIRA, E. M.; OLIVEIRA, L. C.; FIGUEIREDO, E. O. Forest fires in southwestern Brazilian Amazonia: estimates of area and potential carbon emissions. Forest Ecology and Management, v. 291, p. 199–208, 2013.
WOOSTER, M. J.; ROBERTS, G.; PERRY, G. L.; KAUFMAN, Y. J. Retrieval of biomass combustion rates and totals from fire radiative power observations: FRP derivation and calibration relationships between biomass consumption and fire radiative energy release. Journal of Geophysical Research, v. 110, n. D24, p. 1-24, 2005.
ZHANG, Y.-H.; WOOSTER, M. J.; TUTUBALINA, O.; PERRY, G. L. Monthly burned area and forest fire carbon emission estimates for the Russian Federation from SPOT VGT. Remote Sensing of Environment, v. 87, n. 1, p. 1–15, 2003.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2025 Robson Brito Santos, Igor Luiz Berti Silva, Thiago Statella

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
A Revista Agrogeoambiental é um periódico científico de acesso aberto e gratuito.
A submissão de artigos e demais obras de comunicação científica para a Revista Agrogeoambiental implica plena aceitação pelo autor e pelos coautores da política de direitos autorais abaixo:
● Autor e coautores mantêm os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution, que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
● Autor e coautores têm permissão e são estimulados a publicar e distribuir seu trabalho on-line (ex.: em repositórios institucionais ou na sua página pessoal) após seu aceite e publicação pela Revista Agrogeoambiental - mantendo o reconhecimento de autoria e publicação inicial nesta revista.
● Autor e coautores declaram que a obra é de autoria deles e responsabilizam-se por sua originalidade e pelas opiniões nela contidas.
● Após aceito e publicado o artigo, autor e coautores autorizam o editor a divulgar em mídias e modalidades de escolha do editor.
● O autor e os coautores resguardam os direitos autorais morais do obra publicada.