Concept and simulation of an unmanned agricultural spraying aircraft

Autores/as

DOI:

https://doi.org/10.18406/2316-1817v12n420201502

Palabras clave:

Aerodynamics. Agriculture. Pesticides. UAV.

Resumen

In recent years, the Brazilian agriculture production expanded by 900 % over 1990, while the cultivated areas increased at a rate of 2 % per year. Due to this expansion, pulverization turned from manual to mechanical using ground equipment and aircraft. As a result of the new tendencies, recent statistics show the negative impacts on the health of pilots and operators of terrestrial machinery and on the environment. The present study evaluates the concept of an unmanned aerial vehicle (UAV) for pulverization of defensive products, named here as AVANT. In this study, new airfoils are evaluated, lifting line technique, vortex and panels method are used to define the geometry of the wings, fuselage and tail elements. Simulations were realized to verify the performance of the AVANT during operational shots and maneuvers. The basic parameters of the proposed AVANT are, Wingspan: 6 m; Monoplane; High wing; Piston engine (gasoline); Propeller; Tractor type; Installed power: 18 hp; Length: 5.5 m; Height: 1.477 m; Tail dragger type; Tail width: 2.6 m; Empty weight: 108.585 kg; Gross weight: 150 kg; Maximum Endurance: 9 h; Fuel capacity: 28 L; Agrochemicals capacity: 20 L; The results show that the AVANT is adequate for the proposed application.

Biografía del autor/a

João Carlos Teles Ribeiro da Silva, Instituto Federal Sul de Minas Gerais, IFSULDEMINAS, Campus Muzambinho

Departamento de Agronomia do IFSULDEMIANS Campus Muzambinho.

Kamal Abdel Radi Ismail, UNICAMP

Departamento de Energia da Faculdade de Engenharia Mecânica.

Citas

ABUBAKAR, M.; MALA, M.; MUMIN, A.; ZAINAB, T.; FATIMA, A. Perceptions of environmental effects of pesticides use in vegetable production by farmers along River Ngadda of Maiduguri, Nigeria. J Agric Environ Sci [Internet], v. 4, n. 1, p. 212-5, 2015. https://dx.doi.org/10.15640/jaes.v4n1a26.

BURALLI, R.J.; RIBEIRO, H.; MAUAD, T.; AMATO-LOURENÇO, L.F.; SALGE, J.M.; DIAZ-QUIJANO, F.A.; LEÃO, R.S.; MARQUES, R.C.; SILVA, D.S.; GUIMARÃES, J.R.D. Respiratory condition of family farmers exposed to pesticides in the state of Rio de Janeiro, Brazil. International journal of environmental research and public health, v. 15, n. 6, p. 1203, 2018. https://doi.org/10.3390/ijerph15061203.

CHAIM, A. Eficiência de aplicação. Embrapa de Informação Tecnológica. http://www.agencia.cnptia.embrapa.br/gestor/agricultura_e_meio_ambiente/arvore/CONTAG01_44_210200792814.html/ (accessed 12 Dec 2019).

FAIÇAL, B.S.; COSTA, F.G.; PESSIN, G.; UEYAMA, J.; FREITAS, H.; COLOMBO, A.; FINI, P.H.; VILLAS, L.; OSÓRIO, F.S.; VARGAS, P.A.; BRAUN, T. The use of unmanned aerial vehicles and wireless sensor networks for spraying pesticides. Journal of Systems Architecture, v. 60, n. 4, p. 393-404, 2014.

FAIÇAL, B.S.; FREITAS, H.; GOMES, P.H.; MANO, L.Y.; PESSIN, G.; DE CARVALHO, A.C.; KRISHNAMACHARI, B.; UEYAMA, J. An adaptive approach for UAV-based pesticide spraying in dynamic environments. Computers and Electronics in Agriculture, v. 138, p. 210-223, 2017.

GABOR, O. Ş.; KOREANSCHI, A.; BOTEZ, R. M. A new non-linear vortex lattice method: Applications to wing aerodynamic optimizations. Chinese Journal of Aeronautics, v. 29, n. 5, p. 1178-1195, 2016. https://doi.org/10.1016/j.cja.2016.08.001.

HUANG, Y.; HOFFMANN, W.C.; LAN, Y.; WU, W.; FRITZ, B.K. Development of a spray system for an unmanned aerial vehicle platform. Applied Engineering in Agriculture, v. 25, n. 6, p. 803-809, 2009. https://doi.org/10.13031/2013.29229.

JAFARIMOGHADDAM, A.; ABEROUMAND, S. Introducing an optimized airfoil shape using panel method, a short report. Eur. J. Adv. Eng. Technol, v. 3, n. 7, p. 47-52, 2016. http://www.ejaet.com/PDF/3-7/EJAET-3-7-47-52.pdf/.

JUNQUEIRA, L.E.A.R.; CONTRERA, L. JUNQUEIRA, L. E. A. R.; CONTRERA, L. Occupational Exposure to Agrochemicals: A Literature Review. In: Congress of the International Ergonomics Association. Springer, Cham, 2018. p. 31-34. https://doi.org/10.1007/978-3-319-96098-2_5.

KELLY, M.R.; COHEN, R.A. The Effects of an Herbicide and Antibiotic Mixture on Aquatic Primary Producers and Grazers. Bulletin of environmental contamination and toxicology, v. 101, n. 5, p. 556-561, 2018.

LING, W.; DU, C.; ZE, Y.; SHUMAO, W. Research on the prediction model and its influencing factors of droplet deposition area in the wind tunnel environment based on UAV spraying. IFAC-PapersOnLine, v. 51, n. 17, p. 274-279, 2018.

LIU, Y.; YANG, Z.; DENG, J.; ZHU, J. Investigation of fuel savings for an aircraft due to optimization of the center of gravity. In: International Symposium on Application of Materials Science and Energy Materials (SAMSE). Shanghai, 2018.

MARCELINO, A.F.; WACHTEL, C.C.; GHISI, N.C. Are Our Farm Workers in Danger? Genetic Damage in Farmers Exposed to Pesticides. International journal of environmental research and public health, v. 16, n. 3, p. 358, 2019.

MATSUO, C.A.S.; ISMAIL, K.A.R. Otimização do aerofólio NACA para um veículo aéreo não tripulado com aplicação agrícola. Mecánica Computional, v. 29, n. 1, p. 3657-69, 2010. https://dx.doi.org/10.13140/2.1.3845.4562.

MEIVEL, S.M.E.; MAGUTEESWARAN, R.; GANDHIRAJ, N.B.E.; SRINIVASAN, G. Quadcopter UAV based fertilizer and pesticide spraying system. Journal Engeenering Science, v. 1, n. 1, p. 8-12, 2016.

MOGILI, U.R.; DEEPAK, B.B.V.L. Review on application of drone systems in precision agriculture. Procedia Computer Science, v. 133, p. 502-509, 2018. https://doi.org/10.1016/j.procs.2018.07.063.

OJO, J. Pesticides use and health in Nigeria. Ife J of Sci, v. 18, n. 4, p. 981-991, 2016.

PALLADINI, L.A., 2019. Aplicação de Agrotóxicos, Riscos, Legislação de Aplicação de Agrotóxicos. https://www.portalsaofrancisco.com.br/biologia/aplicacao-de-agrotoxicos/ (accessed 23 April 2019).

RAMOS‐GARCÍA, N.; SØRENSEN, J.N.; SHEN, W.Z. Three‐dimensional viscous‐inviscid coupling method for wind turbine computations. Wind Energy, v. 19, n. 1, p. 67-93, 2016. https://doi.org/10.1002/we.1821.

REEVES, W.R.; MCGUIRE, M.K.; STOKES, M.; VICINI, J.L. Assessing the Safety of Pesticides in Food: How Current Regulations Protect Human Health. Advances in Nutrition, v. 10, n. 1, p. 80-88, 2019. https://doi.org/10.1093/advances/nmy061.

RIBEIRO, F.C.; PAULA, A.A.; SCHOLZ, D.; SILVA, R.G.A. Wing geometric parameter studies of a box wing aircraft configuration for subsonic flight. In: 7th European Conference for Aeronautics and Space Sciences (EUCASS 2017), Milan.

SENA, T.R.R.; DOURADO, S.S.F.; LIMA, L.V.; ANTONIOLLI, Â.R. The hearing of rural workers exposed to noise and pesticides. Noise & health, v. 20, n. 92, p. 23, 2018.

SCHMIDT, F.; ZANELLA, S.J. Avaliações qualitativas de pulverizadores agrícolas em propriedades rurais na região de Erechim-RS. Revista em Agronegócio e Meio Ambiente, v. 10, n. 3, p. 633-652, 2017. http://dx.doi.org/10.17765/2176-9168.2017v10n3p633-652.

SILVA, S.A.; ALVARENGA, C.B.; LIMA, J.S.S.; SILVA, M.A. Spatial quality assessment of pesticide applications using a cannon sprayer. Engenharia na Agricultura. v. 23, n. 5, p. 418-427, 2015. https://doi.org/10.13083/reveng.v23i5.527.

WACHTEL, C.C.; OLIVEIRA, E.C.; MANIGLIA, T.C.; SMITH-JOHANNSEN, A.; ROQUE, A.A., GHISI, N.C. Waterborn Genotoxicity in Southern Brazil Using Astyanax bifasciatus (Pisces: Teleostei). Bulletin of environmental contamination and toxicology, v. 102, n. 1, p. 59-65, 2019.

WANG, G.; LAN, Y.; QI, H.; CHEN, P.; HEWITT, A.; HAN, Y. Field evaluation of an unmanned aerial vehicle (UAV) sprayer: effect of spray volume on deposition and the control of pests and disease in wheat. Pest management science, v. 75, n. 6, p. 1546-1555, 2019. https://doi.org/10.1002/ps.5321.

WANG, X.; HE, X.; WANG, C.; WANG, Z.; LI, L.; WANG, S.; WANG, Z. Spray drift characteristics of fuel powered single-rotor UAV for plant protection. Transactions of the Chinese Society of Agricultural Engineering, v. 33, n. 1, p. 117-123, 2017.

WEN, S.; ZHANG, Q.; YIN, X.; LAN, Y.; ZHANG, J.; GE, Y. Design of Plant Protection UAV Variable Spray System Based on Neural Networks. Sensors, v. 19, n. 5, p. 1112, 2019. https://doi.org/10.3390/s19051112.

XUE, X.; LAN, Y.; SUN, Z.; CHANG, C.; HOFFMANN, W.C. Develop an unmanned aerial vehicle based automatic aerial spraying system. Computers and electronics in agriculture, v. 128, p. 58-66, 2016. https://doi.org/10.1016/j.compag.2016.07.022.

YANAGIHARA, D.; BRAGAGNOLO, C. Cost-benefit of the reverse logistics of empty packaging of agrochemicals in Brazil. Revista iPecege, v. 4, n. 2, p. 16-24, 2018. http://dx.doi.org/10.22167/r.ipecege.2018.2.16.

YONGJUN, Z.; SHENGHUI, Y.; CHUNJIANG, Z.; LIPING, C.; LAN, Y.; YU, T. Modelling operation parameters of UAV on spray effects at different growth stages of corns. International Journal of Agricultural and Biological Engineering, v. 10, n. 3, p. 57-66, 2017.

YU, Y.; GUAN, Z. Learning from bat: aerodynamics of actively morphing wing. Theoretical and Applied Mechanics Letters, v. 5, n. 1, p. 13-15, 2015.

YUANYUAN, G.; YUTAO, Z.; ZHANG, N.; LIANG, N.; WANWEN, Z.; HUIZHU, Y. Primary studies on spray droplets distribution and control effects of aerial spraying using unmanned aerial vehicle against wheat midge. Crops, v. 2, p. 139-142, 2013.

ZHANG, Y.; LI, Y.; HE, Y.; LIU, F.; CEN, H.; FANG, H. Near ground platform development to simulate UAV aerial spraying and its spraying test under different conditions. Computers and electronics in agriculture, v. 148, p. 8-18, 2018.

ZHU, H.; LAN, Y.; WU, W.; HOFFMANN, W.C.; HUANG, Y.; XUE, X.; LIANG, J.; FRITZ, B. Development of a PWM precision spraying controller for unmanned aerial vehicles. Journal of Bionic Engineering, v. 7, n. 3, p. 276-283, 2010.

Publicado

2021-03-10

Cómo citar

Teles Ribeiro da Silva, J. C., & Ismail, K. A. R. (2021). Concept and simulation of an unmanned agricultural spraying aircraft. Revista Agrogeoambiental, 12(4). https://doi.org/10.18406/2316-1817v12n420201502

Número

Sección

Artigo Científico