Biopolymer production by rhizobacteria associated with Cactaceae

Autores/as

DOI:

https://doi.org/10.18406/2316-1817v18nunico20262061

Palabras clave:

Exopolysaccharides. Biofilms. Caatinga. Microbiome. sustainability.

Resumen

Bacterial biopolymers are biodegradable substances and sustainable alternatives to conventional polymers. Thus, they have been gaining prominence as sustainable alternatives to petroleum-derived polymers, promoting research aimed at optimizing their production and application in various industrial sectors. In this context, this study aims to select rhizobacteria from the Caatinga with the potential to synthesize exopolysaccharides (EPS) and define the optimal conditions for their production. Bacterial suspensions were inoculated on sterile filter paper discs on culture medium inducing EPS production. EPS production was determined by the formation of a mucoid layer and confirmed in the presence of absolute ethanol. The isolates that accumulated the highest amount of EPS were subjected to tests based on the Rotational Central Composite Design (RCCD), varying pH, temperature, and glucose as a carbon source. EPS recovery was evaluated in two treatments: static fermentation and under constant agitation. Among the 15 isolates selected, PH9.1 had the best performance in assay 13 (pH 7.0; temperature 38.5°C; glucose 1%), with a mucoid layer diameter of 2.15 cm, higher than the others. Moreover, static fermentation resulted in a higher yield of fresh (0.64 g) and dry (0.42 g) mass, standing out as the most efficient condition, which reinforces the biotechnological potential of Caatinga rhizobacteria for sustainable EPS production and boosts new industrial applications.

Citas

AL-ANI, S.; KIM, Y. Carbon preference by Cupriavidus necator for growth and accumulation phases: heterotrophic vs. autotrophic metabolisms. Journal of Power Sources, v. 626, p. 235797, 2025. DOI: https://doi.org/10.1016/j.jpowsour.2024.235797

AZIZ, K.; ZAIDI, A. H. Bifidobacterial biofilms as next-generation probiotics and their role in intestinal microbiocenosis. Critical Reviews in Microbiology, p. 1-24, 2024. DOI: https://doi.org/10.1080/1040841X.2024.2438119

BEN ZINEB, A.; LAMINE, M.; KHALLEF, A.; HAMDI, H.; AHMED, T.; AL-JABRI, H.; ALSAFRAN, M.; MLIKI, A.; SAYADI, S.; GARGOURI, M. Harnessing rhizospheric core microbiomes from arid regions for enhancing date palm resilience to climate change effects. Frontiers in Microbiology, v. 15, p. 1362722, 2024. DOI: https://doi.org/10.3389/fmicb.2024.1362722

CUI, Y.; WANG, D.; ZHANG, L.; QU, X. Research progress on the regulatory mechanism of biofilm formation in probiotic lactic acid bacteria. Critical Reviews in Food Science and Nutrition, v. 65, n. 25, p. 4869-4883, 2024. DOI: https://doi.org/10.1080/10408398.2024.2400593

CHAROENWONGPAIBOON, T.; CHAROENWONGPHAIBUN, C.; WANGPAIBOON, K.; PANPETCH, P.; WANICHACHEVA, N.; PICHYANGKURA, R. Endo-and exo-levanases from Bacillus subtilis HM7: catalytic components, synergistic cooperation, and application in fructooligosaccharide synthesis. International Journal of Biological Macromolecules, v. 271, p. 132508, 2024. DOI: https://doi.org/10.1016/j.ijbiomac.2024.132508

DEO, R.; LAKRA, U.; OJHA, M.; NIGAM, V. K.; SHARMA, S. R. Exopolysaccharides in microbial interactions: signaling, quorum sensing, and community dynamics. Natural Product Research, v. 39, n. 11, p. 1-16, 2024. DOI: https://doi.org/10.1080/14786419.2024.2405867

DIAS, K. C. F. P.; SILVA SOUZA, I. J.: BARROS, Y. C.: SILVA, E. P.: LEITE, J.: FEITOZA, A. F. A.: JESUS SANTOS, A. F. Native bacteria from the caatinga biome mitigate the effects of drought on melon (Cucumis melo L.). Comunicata Scientiae, v. 15, e4072-e4072, 2024. DOI: https://doi.org/10.14295/cs.v15.4072

FONSECA-GARCÍA, C.; COLEMAN-DERR, D.; GARRIDO, E.; VISEL, A.; TRINGE, S. G.; PARTIDA-MARTÍNEZ, L. P. The cacti microbiome: interplay between habitat-filtering and host-specificity. Frontiers in Microbiology, v. 7, n. 150, p. 1-16, 2016. DOI: https://doi.org/10.3389/fmicb.2016.00150

GAN, L.; HUANG, X.; HE, Z.; HE, T. Exopolysaccharide production by salt-tolerant bacteria: recent advances, current challenges, and future prospects. International Journal of Biological Macromolecules, v. 264, n. 2, p. 130731, 2024. DOI: https://doi.org/10.1016/j.ijbiomac.2024.130731

GROVER, M.; ALI, S. Z.; SANDHYA, V.; RASUL, A.; VENKATESMARLU, B. Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World Journal of Microbiology and Biotechnology, v.27, p.1231-1240, 2011. DOI: https://doi.org/10.1007/s11274-010-0572-7

GUIMARÃES, B V. C.; DONATO, S. L. R.; ASPIAZÚ, I.; AZEVEDO, A. N.; CARVALHO, A. J. Regression models for productivity prediction in cactus pear cv. Gigante. Revista Brasileira de Engenharia Agrícola e Ambiental, v.24, n.11, p.721-727, 2020. DOI: http://dx.doi.org/10.1590/1807-1929/agriambi.v24n11p721-727

GUIMARÃES, D. P.; COSTA, F, RODRIGUES, M. J.; MAUGERI, F. Optimization of dextran syntesis and acidic hydrolisis by surface response analysis. Brazilian Journal of Chemical Engineering, v. 16, p. 129-139, 1999. DOI: https://doi.org/10.1590/S0104-66321999000200004

HASSANISAADI, M.; VATANKHAH, M.; KENNEDY, J. F.; RABIEI, A.; RISEH, R. S. Advancements in xanthan gum: a macromolecule for encapsulating plant probiotic bacteria with enhanced properties. Carbohydrate Polymers, v. 348, n. 15, 122801122801, 2025. DOI: https://doi.org/10.1016/j.carbpol.2024.122801

HUANG, B.; NORTH, G. B.; NOBEL, P. S. Soil steaths, photosynthate distribution to roots, and rhizosphere water relations for Opuntia ficus-indica. International Journal of Plant Science, v. 154, n. 3, p. 425-431, 1993.

LOOIJESTEIJN, P. J.; BOELS, I. C.; KLEEREBEZEM, M.; HUGENHOLTZ, J. Regulation of exopolysaccharide production by Lactococcus lactis subsp. cremoris by the sugar source. Applied and Environmental Microbiology, v. 65, n. 11, p. 5003-5008, 1999. DOI: https://doi.org/10.1128/aem.65.11.5003-5008.1999

MARASCO, R.; FUSI, M.; COSCOLÍN, C.; COSCOLÍN, C.; BAROZZI, A.; ALMENDRAL, D.; BARGIELA, R.; NUTSCHEL, C. G.; PFLEGER, C.; DITTRICH, J.; GOHLKE, H.; MATESANZ, R.; SANCHEZ-CARRILLO, S.; MAPELLI, F.; CHERNIKOVA, T. N.; GOLYSHIN, P. N.; FERRER, M.; DAFFONCHIO, D. Enzyme adaptation to habitat thermal legacy shapes the thermal plasticity of marine microbiomes. Nature Communcations, v. 14, n. 1045, 2023. DOI: https://doi.org/10.1038/s41467-023-36610-0

MOURO, C.; GOMES, A. P.; GOUVEIA, I. C. Microbial exopolysaccharides: structure, diversity, applications, and future frontiers in sustainable functional materials. Polysaccharides, v. 5, n. 3, p. 241-287, 2024. DOI: https://doi.org/10.3390/polysaccharides5030018

NAMBIAR, K. P, S. K.; DEVARAJ, D.; SEVANAN, M. Development of biopolymers from microbes and their environmental applications. Physical Sciences Reviews, v. 9, n. 4, p. 1903-1929, 2024. DOI: https://doi.org/10.1515/psr-2022-0219

NGUYEN, P. T.; NGUYEN, T. T.; BUI, D. C.; HONG, P. T.; HOANG, Q. K.; NGUYEN, H. T. Exopolysaccharide production by lactic acid bacteria: the manipulation of environmental stresses for industrial applications. AIMS Microbiol, v. 6, p. 451–469, 2020. DOI: https://doi.org/10.3390/biom14091162

PAULO, E. M.; VASCONCELOS, M. P.; OLIVEIRA, I. S.; AFFE, H. M. J.; NASCIMENTO, R.; MELO I. S.; ROQUE, M. R. A.; ASSIS, S. A. An alternative method for screening lactic acid bacteria for the production of exopolysaccharides with rapid confirmation. Food Science and Technology, v. 32, p. 710-714, 2012. DOI: https://doi.org/10.1590/S0101-20612012005000094

RODRIGUES, M. I.; IEMMA, F. A. Planejamento de experimentos e otimização de processos. Campinas: Cárita, 2009. 238 p.

SANTOS, A. F. J.; MORAIS, J. S.; MIRANDA, J. S.; MOREIRA, Z. P. M.; FEITOZA, A. F. A.; LEITE, J.; FERNANDES-JÚNIOR, P. I. Cacti-associated rhizobacteria from Brazilian Caatinga biome induce maize growth promotion and alleviate abiotic stress. Revista Brasileira de Ciências Agrárias, v. 15, n.3, e8221, 2020. DOI: https://doi.org/10.5039/agraria.v15i3a8221

SERIKOV, T. A.; JAMALOVA, G. А.; RAFIKOVA, K. S.; K YELIKBAYEV, B.; YERNAZAROVA, A. K.; SERIKOVNA, K. L.; ZAZYBIN, A. G.; SAKHANIN, V. S.; EGUTKIN, V. Y. Ecological, biological and biotechnological aspects of Saccharomyces cerevisiae biomass production. Caspian Journal of Environmental Sciences, v. 22, n. 2, p. 499-512, 2024. DOI: https://doi.org/10.22124/cjes.2023.7327

SRIVASTAVA, S.; BHATTACHARJEE, A.; DUBEY, S.; SHARMA, S. Bacterial exopolysaccharide amendment improves the shelf life and functional efficacy of bioinoculant under salinity stress. Journal of Applied Microbiology, v. 135, n. 7, p. 1-16, 2024. DOI: https://doi.org/10.1093/jambio/lxae166

STATSOFT Inc. Statistica: data analysis software system, version 7.0. Tulsa: StatSoft Inc., 2004. Disponível em: http://www.statsoft.com. Acesso em: 1 out. 2025.

YIN, Q.; HE, K.; COLLINS, G.; VRIEZE, J.; WU, G. Microbial strategies driving low concentration substrate degradation for sustainable remediation solutions. npj Clean Water, v. 7, n. 1, p. 1-14, 2024. DOI: https://doi.org/10.1038/s41545-024-00348-z

WU, S.; WANG, F.; WANG, H.; SHEN, C.; YU, K. Meta-analysis of abiotic conditions affecting exopolysaccharide production in cyanobacteria. Metabolites, v. 15, n. 2, p. 1-13, 2025. DOI: https://doi.org/10.3390/metabo15020131

Publicado

2026-01-16

Cómo citar

Figueiredo Landim, L. F. L., Simões da Rocha Bispo, A. S. da R. B., da Silva Braulio, C., & Feitoza de Jesus Santos, A. F. de J. S. (2026). Biopolymer production by rhizobacteria associated with Cactaceae. Revista Agrogeoambiental, 18(unico), e20262061. https://doi.org/10.18406/2316-1817v18nunico20262061