Biopolymer production by rhizobacteria associated with Cactaceae
DOI:
https://doi.org/10.18406/2316-1817v18nunico20262061Palabras clave:
Exopolysaccharides. Biofilms. Caatinga. Microbiome. sustainability.Resumen
Bacterial biopolymers are biodegradable substances and sustainable alternatives to conventional polymers. Thus, they have been gaining prominence as sustainable alternatives to petroleum-derived polymers, promoting research aimed at optimizing their production and application in various industrial sectors. In this context, this study aims to select rhizobacteria from the Caatinga with the potential to synthesize exopolysaccharides (EPS) and define the optimal conditions for their production. Bacterial suspensions were inoculated on sterile filter paper discs on culture medium inducing EPS production. EPS production was determined by the formation of a mucoid layer and confirmed in the presence of absolute ethanol. The isolates that accumulated the highest amount of EPS were subjected to tests based on the Rotational Central Composite Design (RCCD), varying pH, temperature, and glucose as a carbon source. EPS recovery was evaluated in two treatments: static fermentation and under constant agitation. Among the 15 isolates selected, PH9.1 had the best performance in assay 13 (pH 7.0; temperature 38.5°C; glucose 1%), with a mucoid layer diameter of 2.15 cm, higher than the others. Moreover, static fermentation resulted in a higher yield of fresh (0.64 g) and dry (0.42 g) mass, standing out as the most efficient condition, which reinforces the biotechnological potential of Caatinga rhizobacteria for sustainable EPS production and boosts new industrial applications.
Citas
AL-ANI, S.; KIM, Y. Carbon preference by Cupriavidus necator for growth and accumulation phases: heterotrophic vs. autotrophic metabolisms. Journal of Power Sources, v. 626, p. 235797, 2025. DOI: https://doi.org/10.1016/j.jpowsour.2024.235797
AZIZ, K.; ZAIDI, A. H. Bifidobacterial biofilms as next-generation probiotics and their role in intestinal microbiocenosis. Critical Reviews in Microbiology, p. 1-24, 2024. DOI: https://doi.org/10.1080/1040841X.2024.2438119
BEN ZINEB, A.; LAMINE, M.; KHALLEF, A.; HAMDI, H.; AHMED, T.; AL-JABRI, H.; ALSAFRAN, M.; MLIKI, A.; SAYADI, S.; GARGOURI, M. Harnessing rhizospheric core microbiomes from arid regions for enhancing date palm resilience to climate change effects. Frontiers in Microbiology, v. 15, p. 1362722, 2024. DOI: https://doi.org/10.3389/fmicb.2024.1362722
CUI, Y.; WANG, D.; ZHANG, L.; QU, X. Research progress on the regulatory mechanism of biofilm formation in probiotic lactic acid bacteria. Critical Reviews in Food Science and Nutrition, v. 65, n. 25, p. 4869-4883, 2024. DOI: https://doi.org/10.1080/10408398.2024.2400593
CHAROENWONGPAIBOON, T.; CHAROENWONGPHAIBUN, C.; WANGPAIBOON, K.; PANPETCH, P.; WANICHACHEVA, N.; PICHYANGKURA, R. Endo-and exo-levanases from Bacillus subtilis HM7: catalytic components, synergistic cooperation, and application in fructooligosaccharide synthesis. International Journal of Biological Macromolecules, v. 271, p. 132508, 2024. DOI: https://doi.org/10.1016/j.ijbiomac.2024.132508
DEO, R.; LAKRA, U.; OJHA, M.; NIGAM, V. K.; SHARMA, S. R. Exopolysaccharides in microbial interactions: signaling, quorum sensing, and community dynamics. Natural Product Research, v. 39, n. 11, p. 1-16, 2024. DOI: https://doi.org/10.1080/14786419.2024.2405867
DIAS, K. C. F. P.; SILVA SOUZA, I. J.: BARROS, Y. C.: SILVA, E. P.: LEITE, J.: FEITOZA, A. F. A.: JESUS SANTOS, A. F. Native bacteria from the caatinga biome mitigate the effects of drought on melon (Cucumis melo L.). Comunicata Scientiae, v. 15, e4072-e4072, 2024. DOI: https://doi.org/10.14295/cs.v15.4072
FONSECA-GARCÍA, C.; COLEMAN-DERR, D.; GARRIDO, E.; VISEL, A.; TRINGE, S. G.; PARTIDA-MARTÍNEZ, L. P. The cacti microbiome: interplay between habitat-filtering and host-specificity. Frontiers in Microbiology, v. 7, n. 150, p. 1-16, 2016. DOI: https://doi.org/10.3389/fmicb.2016.00150
GAN, L.; HUANG, X.; HE, Z.; HE, T. Exopolysaccharide production by salt-tolerant bacteria: recent advances, current challenges, and future prospects. International Journal of Biological Macromolecules, v. 264, n. 2, p. 130731, 2024. DOI: https://doi.org/10.1016/j.ijbiomac.2024.130731
GROVER, M.; ALI, S. Z.; SANDHYA, V.; RASUL, A.; VENKATESMARLU, B. Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World Journal of Microbiology and Biotechnology, v.27, p.1231-1240, 2011. DOI: https://doi.org/10.1007/s11274-010-0572-7
GUIMARÃES, B V. C.; DONATO, S. L. R.; ASPIAZÚ, I.; AZEVEDO, A. N.; CARVALHO, A. J. Regression models for productivity prediction in cactus pear cv. Gigante. Revista Brasileira de Engenharia Agrícola e Ambiental, v.24, n.11, p.721-727, 2020. DOI: http://dx.doi.org/10.1590/1807-1929/agriambi.v24n11p721-727
GUIMARÃES, D. P.; COSTA, F, RODRIGUES, M. J.; MAUGERI, F. Optimization of dextran syntesis and acidic hydrolisis by surface response analysis. Brazilian Journal of Chemical Engineering, v. 16, p. 129-139, 1999. DOI: https://doi.org/10.1590/S0104-66321999000200004
HASSANISAADI, M.; VATANKHAH, M.; KENNEDY, J. F.; RABIEI, A.; RISEH, R. S. Advancements in xanthan gum: a macromolecule for encapsulating plant probiotic bacteria with enhanced properties. Carbohydrate Polymers, v. 348, n. 15, 122801122801, 2025. DOI: https://doi.org/10.1016/j.carbpol.2024.122801
HUANG, B.; NORTH, G. B.; NOBEL, P. S. Soil steaths, photosynthate distribution to roots, and rhizosphere water relations for Opuntia ficus-indica. International Journal of Plant Science, v. 154, n. 3, p. 425-431, 1993.
LOOIJESTEIJN, P. J.; BOELS, I. C.; KLEEREBEZEM, M.; HUGENHOLTZ, J. Regulation of exopolysaccharide production by Lactococcus lactis subsp. cremoris by the sugar source. Applied and Environmental Microbiology, v. 65, n. 11, p. 5003-5008, 1999. DOI: https://doi.org/10.1128/aem.65.11.5003-5008.1999
MARASCO, R.; FUSI, M.; COSCOLÍN, C.; COSCOLÍN, C.; BAROZZI, A.; ALMENDRAL, D.; BARGIELA, R.; NUTSCHEL, C. G.; PFLEGER, C.; DITTRICH, J.; GOHLKE, H.; MATESANZ, R.; SANCHEZ-CARRILLO, S.; MAPELLI, F.; CHERNIKOVA, T. N.; GOLYSHIN, P. N.; FERRER, M.; DAFFONCHIO, D. Enzyme adaptation to habitat thermal legacy shapes the thermal plasticity of marine microbiomes. Nature Communcations, v. 14, n. 1045, 2023. DOI: https://doi.org/10.1038/s41467-023-36610-0
MOURO, C.; GOMES, A. P.; GOUVEIA, I. C. Microbial exopolysaccharides: structure, diversity, applications, and future frontiers in sustainable functional materials. Polysaccharides, v. 5, n. 3, p. 241-287, 2024. DOI: https://doi.org/10.3390/polysaccharides5030018
NAMBIAR, K. P, S. K.; DEVARAJ, D.; SEVANAN, M. Development of biopolymers from microbes and their environmental applications. Physical Sciences Reviews, v. 9, n. 4, p. 1903-1929, 2024. DOI: https://doi.org/10.1515/psr-2022-0219
NGUYEN, P. T.; NGUYEN, T. T.; BUI, D. C.; HONG, P. T.; HOANG, Q. K.; NGUYEN, H. T. Exopolysaccharide production by lactic acid bacteria: the manipulation of environmental stresses for industrial applications. AIMS Microbiol, v. 6, p. 451–469, 2020. DOI: https://doi.org/10.3390/biom14091162
PAULO, E. M.; VASCONCELOS, M. P.; OLIVEIRA, I. S.; AFFE, H. M. J.; NASCIMENTO, R.; MELO I. S.; ROQUE, M. R. A.; ASSIS, S. A. An alternative method for screening lactic acid bacteria for the production of exopolysaccharides with rapid confirmation. Food Science and Technology, v. 32, p. 710-714, 2012. DOI: https://doi.org/10.1590/S0101-20612012005000094
RODRIGUES, M. I.; IEMMA, F. A. Planejamento de experimentos e otimização de processos. Campinas: Cárita, 2009. 238 p.
SANTOS, A. F. J.; MORAIS, J. S.; MIRANDA, J. S.; MOREIRA, Z. P. M.; FEITOZA, A. F. A.; LEITE, J.; FERNANDES-JÚNIOR, P. I. Cacti-associated rhizobacteria from Brazilian Caatinga biome induce maize growth promotion and alleviate abiotic stress. Revista Brasileira de Ciências Agrárias, v. 15, n.3, e8221, 2020. DOI: https://doi.org/10.5039/agraria.v15i3a8221
SERIKOV, T. A.; JAMALOVA, G. А.; RAFIKOVA, K. S.; K YELIKBAYEV, B.; YERNAZAROVA, A. K.; SERIKOVNA, K. L.; ZAZYBIN, A. G.; SAKHANIN, V. S.; EGUTKIN, V. Y. Ecological, biological and biotechnological aspects of Saccharomyces cerevisiae biomass production. Caspian Journal of Environmental Sciences, v. 22, n. 2, p. 499-512, 2024. DOI: https://doi.org/10.22124/cjes.2023.7327
SRIVASTAVA, S.; BHATTACHARJEE, A.; DUBEY, S.; SHARMA, S. Bacterial exopolysaccharide amendment improves the shelf life and functional efficacy of bioinoculant under salinity stress. Journal of Applied Microbiology, v. 135, n. 7, p. 1-16, 2024. DOI: https://doi.org/10.1093/jambio/lxae166
STATSOFT Inc. Statistica: data analysis software system, version 7.0. Tulsa: StatSoft Inc., 2004. Disponível em: http://www.statsoft.com. Acesso em: 1 out. 2025.
YIN, Q.; HE, K.; COLLINS, G.; VRIEZE, J.; WU, G. Microbial strategies driving low concentration substrate degradation for sustainable remediation solutions. npj Clean Water, v. 7, n. 1, p. 1-14, 2024. DOI: https://doi.org/10.1038/s41545-024-00348-z
WU, S.; WANG, F.; WANG, H.; SHEN, C.; YU, K. Meta-analysis of abiotic conditions affecting exopolysaccharide production in cyanobacteria. Metabolites, v. 15, n. 2, p. 1-13, 2025. DOI: https://doi.org/10.3390/metabo15020131
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2026 Leonardo Figueiredo Landim, Aline Simões da Rocha Bispo, Caliane da Silva Braulio, Adailson Feitoza de Jesus Santos

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
La Revista Agrogeoambiental es un periódico científico de acceso abierto y gratuito.
La sumisión de artículos y demás obras de comunicación científica para la Revista Agrogeoambiental implica plena aceptación por el autor y los coautores de la política de derechos de autor abajo:
● Autor y coautores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licença Creative Commons Attribution, que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
● Autor y coautores tienen permitido y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) después de su aceptación y publicación por la Revista Agrogeoambiental - manteniendo el reconocimiento de autoría y publicación inicial en esta revista.
● Autor y coautores declaran que la obra es de autoría de ellos y se responsabilizan por su originalidad y por las opiniones contenidas en ella.
● Una vez aceptado y publicado el artículo, autor y co-autores autorizan a la editorial a publicar en los medios y métodos para la elección del editor.
● El autor y coautores consagran los derechos de autor moral de la obra publicada.